首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A MHD-turbulence model for solar corona
Authors:Z Romeou  M Velli  G Einaudi
Institution:1. Department of Physics, University of Patras, 26500 Patras, Greece;2. Department of Astronomy and Space Sciences, University of Florence, Largo E. Fermi 2, 50125 Florence, Italy;3. Department of Physics, University of Pisa, 56100 Pisa, Italy
Abstract:The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.
Keywords:Magnetohydrodynamics (MHD)  Turbulence  Sun: activity  Sun: corona  Sun: magnetic fields
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号