首页 | 本学科首页   官方微博 | 高级检索  
     


Energetics of the magnetosphere
Authors:David P. Stern
Affiliation:(1) Planetary Magnetospheres Branch, Goddard Space Flight Center, 20771 Greenbelt, MD, USA
Abstract:Energy flow in various large-scale processes of the Earth's magnetosphere is examined. This energy comes from the solar wind, via the dawn-to-dusk convection electric field, a field established primarily by magnetic merging but with viscous-like boundary interaction as a possible contributor. The convection field passes about 5 × 1011 W to the near-Earth part of the plasma sheet, and also moves the plasma earthward. In addition, 1–3 × 1011 W are given to the complex system of the Birkeland currents: about 4 × 1010 of this, on the average, goes to parallel acceleration, chiefly of auroral electrons, about 2–3 times that amount to joule heating of the ionosphere, and the rest heats the ring current. The ring current stores energy (mainly as kinetic energy of particles) of the order of 2 × 1015 J, and this value rises and decays during magnetic storms, on time scales ranging from a fraction of a day to several days. The tail can store comparable amounts as magnetic energy, and appreciable fractions of its energy may be released in substorms, on time scales of tens of minutes. The sporadic power level of such events reaches the order of 3 × 1012 W. The role of magnetic merging in such releases of magnetic energy is briefly discussed, as is the correlation between properties of the solar wind and magnetospheric power levels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号