首页 | 本学科首页   官方微博 | 高级检索  
     

基于纹理特征多分辨双Markov-GAR模型的SAR图像分割
引用本文:刘保利,田铮,丁明涛. 基于纹理特征多分辨双Markov-GAR模型的SAR图像分割[J]. 宇航学报, 2007, 28(3): 677-681
作者姓名:刘保利  田铮  丁明涛
作者单位:西北工业大学计算机科学技术学院,西安,710072
基金项目:国家自然科学基金;航空基础科学基金
摘    要:为了提高SAR图像分割精度,提出在以灰度共生矩阵产生的纹理统计量为特征所生成的图像上,同时考虑SAR图像像素间空间分布特征和局部灰度均值和方差等统计量给出多分辨双Markov框架下的GAR模型,采用多分辨MPM的参数估计方法及对应的无监督分割算法,对SAR图像进行纹理分割。实验结果表明该方法用于一些高分辨SAR图像,与基于灰度图像上的多分辨双Markov-GAR模型纹理分割相比,在分割精度上能降低分割时的错分率。

关 键 词:SAR图像  灰度共生矩阵  双Markov模型  多分辨MPM  纹理分割
文章编号:1000-1328(2007)03-0677-05
修稿时间:2006-07-11

Texture Feature-Based Segmentation of SAR Images Using a Multiresolution Pairwise Markov-GAR Model
LIU Bao-li,TIAN Zheng,DING Ming-tao. Texture Feature-Based Segmentation of SAR Images Using a Multiresolution Pairwise Markov-GAR Model[J]. Journal of Astronautics, 2007, 28(3): 677-681
Authors:LIU Bao-li  TIAN Zheng  DING Ming-tao
Abstract:This paper presents a new method for segmentation of synthetic aperture radar(SAR) images.We take into account spatial distributed characters between pixels of SAR images as well as the local means and variances statistics of gray level,a Gaussian autoregressive (GAR) model under a multiresolution pariwise Markov framework can be proposed based on texture feature images witch come from gray level co-occurrence probability statistics.For texture segmentation of SAR images,using the multiresolution maximization of the posterior marginals(MPM) estimate with the corresponding unsupervised segmentation algorithm on those texture feature images.Compared with multiresolution pariwise Markov-GAR model texture segmentation based on gray level images,for some SAR images,the result of experimentation showed that the method used in this paper has a better performance on segmentation precision.
Keywords:SAR image  Gray level co-occurrence matrices  Pairwise markov random field model  Multiresolution MPM  Texture segmentation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号