首页 | 本学科首页   官方微博 | 高级检索  
     

转子叶片加工误差对1.5级跨声速压气机气动性能的影响
引用本文:耿少娟,张小玉,丁林超,王文涛,卞祥德,石书成. 转子叶片加工误差对1.5级跨声速压气机气动性能的影响[J]. 推进技术, 2021, 42(1): 139-148
作者姓名:耿少娟  张小玉  丁林超  王文涛  卞祥德  石书成
作者单位:1.中国科学院工程热物理研究所 先进燃气轮机实验室,北京 100190;2.中国科学院 先进能源动力重点实验室,北京 100190;3.中国科学院 轻型动力创新研究院,北京 100190;4.中国科学院大学 工程科学学院,北京 100049
基金项目:国家科技重大专项(2017-II-0007-0021;2017-II-0006-0020)。
摘    要:压气机叶片加工误差不可避免,将在一定程度上影响压气机的气动性能.为研究叶片加工误差对跨声速压气机气动性能的影响,以燃气轮机进口1.5级跨声速压气机为对象,通过三坐标测量跨声速转子叶片叶型数据,获得了加工误差分布特征;针对实测转子叶片,采用三维CFD数值模拟方法,研究了轮廓度、位置度和扭转角综合误差对压气机转子和级特性线...

关 键 词:加工误差  轮廓度  跨声速压气机  气动性能  数值模拟
收稿时间:2020-06-10
修稿时间:2020-08-06

Impact of Rotor Blade Manufacturing Variability on 1.5 Stage Transonic Compressor Aerodynamic Performance
GENG Shao-juan,ZHANG Xiao-yu,DING Lin-chao,WANG Wen-tao,BIAN Xiang-de,SHI Shu-cheng. Impact of Rotor Blade Manufacturing Variability on 1.5 Stage Transonic Compressor Aerodynamic Performance[J]. Journal of Propulsion Technology, 2021, 42(1): 139-148
Authors:GENG Shao-juan  ZHANG Xiao-yu  DING Lin-chao  WANG Wen-tao  BIAN Xiang-de  SHI Shu-cheng
Affiliation:Institute of Engineering Thermophysics, Chinese Academy of Sciences,,,,,
Abstract:Manufacturing variability of compressor blade is inevitable, which may affect the compressor aerodynamic performance to some extent. The inlet 1.5 stage transonic compressor of a gasturbine was selected to investigate the impact of blade manufacturing variability on the aerodynamic performance of transonic compressor. The surface coordinates of machined rotor blades were measured, and the distribution features of manufacuring variability are obtained. For the measured blades, the three dimensional CFD numerical simulation method was adopted to investigate the effects of compound variability including profile, position and twist angle on the performance curves and flow fields of compressor stage and rotor. For the case that manufacturing variability is dominated by profile error, the maximum thickness of blade profile will change correspondingly. The through flow method in S2 surface was utilized to study the effects of maximum thickness change on the compressor stage and rotor performance at design mass flow rate. The results demonstrate that the manufacturing variability of rotor blade will affect the compressor choke mass rate, the total pressure ratio and efficiency of stage and rotor within the whole flow range. The radial profiles of flow parameters at rotor and stator blade outlets are also changed. The results are mainly due to the changes of shock wave position and strength. At design mass flow rate, the changes of total pressure ratio and efficiency of stage and rotor are negatively related with the variation of profile maximum thickness. The changes of performance incease with the increase of thickness error. For rotor blades, the inlet relative Mach number increases from blade root to tip, the sensitivities of performance to geometric variability strengthen. Considering the comprehensive changes of total pressure ratio and efficiency, the tight tolorence of blade profile within middle and tip height shoud be imposed.
Keywords:Manufacturing variability  Blade profile  Transonic compressor  Aerodynamic performance  Numerical simulation
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号