首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合人工鱼群算法的结构有限元模型修正
引用本文:张安平,陈国平. 基于混合人工鱼群算法的结构有限元模型修正[J]. 航空学报, 2010, 31(5): 940-945
作者姓名:张安平  陈国平
作者单位:南京航空航天大学航空宇航学院,江苏南京210016;南京航空航天大学无人机研究院,江苏南京,210016;南京航空航天大学航空宇航学院,江苏南京,210016
摘    要:将模拟退火算法(SAA)与具有交叉和高斯变异的人工鱼群算法(AFSA)相结合,提出了一种基于混合人工鱼群算法(HAFSA)的结构有限元模型修正方法;针对外编有限元模型修正程序直接嵌入Patran/Nas-tran软件存在困难的情况,设计了一种灵巧且方便的接口模块。以试验模型测试数据与有限元模型计算值的向量残差建立目标函数,在基本AFSA中引入交叉和高斯变异算子用于加快全局优化搜索速度,将目标函数优化值不断刷新公告板,再利用SAA进行局部细化搜索从而显著提高优化解的精度,在满足算法终止条件后获得设计参数的最优值;结合Fortran语言和Visual Basic语言编译接口模块,运行模型修正程序时循环修改Patran软件生成的建模文件并反复调用Nastran软件进行求解。以欧洲航空研究科技组织的基准模型——GARTEUR飞机模型为例,修正结果表明,应用HAFSA进行结构有限元模型修正是可行且有效的。

关 键 词:模型修正  接口模块  优化  人工鱼群算法  遗传算法  模拟退火

Structural Finite Element Model Updating Based on Hybrid Artificial Fish Swarm Algorithm
Zhang Anping,Chen Guoping. Structural Finite Element Model Updating Based on Hybrid Artificial Fish Swarm Algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 940-945
Authors:Zhang Anping  Chen Guoping
Affiliation:1.College of Aerospace Engineering, Nanjing University ofAeronautics and Astronautics2.Research Institute of Unmanned Aircraft, Nanjing University ofAeronautics and Astronautics
Abstract:By combining the artificial fish swarm algorithm (AFSA) with crossover and Gauss mutation with the simulated annealing algorithm (SAA), a novel structural finite element model updating method based on the hybrid artificial fish swarm algorithm (HAFSA) is presented, and a facile and convenient interface module is designed to deal with the difficulty that an external finite element model updating program encounters when it is directly implanted to the Patran/Nastran software. An objective function is established by using the resi-duals between the measurement data vectors of the test model and the calculation value vectors of the finite element model, and crossover and Gauss mutation operators are added to the original AFSA to increase the global optimization search velocity. The bulletin is refreshed by the optimization objective function value continuously, and SAA is applied to carry out local refined search to greatly improve the precision of the optimization solution. The optimization values of design variables are obtained after the algorithm end condition is satisfied. Fortran language is combined with Visual Basic language to compile the interface module. The Patran/Nastran software is transferred iteratively when the model updating program is run. A GARTEUR aircraft model is performed as an example, and updating results show that the finite element model updating based on HAFSA is feasible and effective.
Keywords:model updating  interface module  optimization  artificial fish swarm algorithm  genetic algorithm  simulated annealing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号