首页 | 本学科首页   官方微博 | 高级检索  
     

涡扇发动机气路故障定量诊断的BP网络研究
引用本文:孙斌,张津,张绍基. 涡扇发动机气路故障定量诊断的BP网络研究[J]. 推进技术, 1999, 20(4): 48-52
作者姓名:孙斌  张津  张绍基
作者单位:1. 北京航空航天大学动力系,北京,100083
2. 沈阳航空发动机研究所,沈阳,110015
摘    要:为了克服BP算法收敛速度慢的问题,提出了一种基于混合学习规则的BP算法,并采用模归一化方法,成功地定量组织了故障的学习样本,建立了能够定量分析发动机气路部件故障的人工神经网络(BPN)。通过分析测量系统随机误差的影响和实际试车数据的效验结果,表明该网络具有较强的推广能力及适应性,能基本满足故障定量诊断的要求,并具有较好的工程实用性。

关 键 词:涡轮风扇发动机,发动机空气系统部件,故障诊断,人工神经元网络
修稿时间:1998-10-01

FAULT QUANTITATIVE DIAGNOSIS OF TURBOFAN GAS PATH COMPONENT BY BPN
Sun Bin,Zhang Jin and Zhang Shaoji. FAULT QUANTITATIVE DIAGNOSIS OF TURBOFAN GAS PATH COMPONENT BY BPN[J]. Journal of Propulsion Technology, 1999, 20(4): 48-52
Authors:Sun Bin  Zhang Jin  Zhang Shaoji
Affiliation:Shenyang Aeroengine Research Inst.,Shenyang,110015;Shenyang Aeroengine Research Inst.,Shenyang,110015;Shenyang Aeroengine Research Inst.,Shenyang,110015
Abstract:In order to overcome the convergent difficulty of BP algorithm, a new learning rule of BP algorithm named hybrid rule is proposed.Normalizing the neural net input by its modulus, a fault library with fault magnitude and a BPN which can diagnosis the turbofan gas path component faults quantitatively are built successfully. A validation of the data of noisy measurements and the real engine ground test is made. The diagnostic results show that the BPN can quantify the magnitude of deterioration of the various engine components, detect the multiple faults and has robust adaptation of random error in measurement system.
Keywords:Turbofan engine  Engine air system component  Fault diagnosis  Artificial neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号