首页 | 本学科首页   官方微博 | 高级检索  
     检索      

多控制面飞机的全机颤振主动抑制设计
引用本文:杨超,宋晨,吴志刚,张瞿辉.多控制面飞机的全机颤振主动抑制设计[J].航空学报,2010,31(8):1501-1508.
作者姓名:杨超  宋晨  吴志刚  张瞿辉
作者单位:1. 北京航空航天大学,航空科学与工程学院,北京,100191
2. 成都飞机设计研究所,技术中心,四川,成都,610092
摘    要: 以仿F/A-18A外形的全机模型为对象,研究多输入/多输出(MIMO)飞机颤振主动抑制(AFS)设计方法和特点。控制律采用线性二次型高斯(LQG)方法,结合平衡截断法降阶。首先,仅用机翼舵面对机翼部件和全机设计AFS控制律;然后,全动平尾参与AFS控制;最后,机身额外加装小翼,与机翼舵面联合控制,考察AFS效果。研究发现:单独机翼AFS效果显著,颤振速度提高28%;全机构型有机身模态参与颤振,仅用机翼舵面,低阶控制律颤振速度增量仅为4.6%;全动平尾参与控制可改善低频颤振,但存在低速的高频不稳定模态;机身小翼与机翼舵面联合控制,AFS控制效果可达14.9%。最终,筛选出机翼后缘内侧舵面与机身小翼两组控制面进行AFS设计,即可达到14.5%的颤振速度增量,是较为理想的AFS方案。

关 键 词:气动弹性  颤振主动抑制  最优控制  模型降阶  平衡截断  

Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces
Yang Chao,Song Chen,Wu Zhigang,Zhang Quhui.Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J].Acta Aeronautica et Astronautica Sinica,2010,31(8):1501-1508.
Authors:Yang Chao  Song Chen  Wu Zhigang  Zhang Quhui
Institution:1. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics2. Technical Center, Chengdu Aircraft Design &; Research Institute
Abstract:Active flutter suppression (AFS) of a multi-input/multi-output (MIMO) airplane configuration is studied on an imitational F/A-18A model. The controllers are designed by linear quadratic Gaussian (LQG) method truncated by a balanced truncation method. First, by merely using the wing flaps, the AFS of the wing and the airplane are performed. Then, all-moving horizontal empennage are involved into flutter control. Finally, a pair of fuselage flaps is combined with the wing flaps for AFS. It is found that the AFS of the wing is effective with the flutter speed increasing by 28%. However, the increment is only 4.6% for the airplane because of the fuselage modes coupling into flutter. The addition of all-moving horizontal empennage can improve low-frequency flutter, but it can also cause low-speed high-frequency instability. Combining the fuselage flaps with the wing flaps can increase the flutter speed by 14.9%. Finally, the trailing-edge in-board flaps and the fuselage flaps are selected to achieve a 14.5% flutter speed increment, which is a satisfactory AFS design.
Keywords:aeroelasticity  active flutter suppression  optimal control  model reduction  balanced truncation
本文献已被 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号