首页 | 本学科首页   官方微博 | 高级检索  
     

空间变化场景下卫星部组件域适应识别研究
引用本文:牟金震,朱文山,盛延平,李 爽,梁 彦. 空间变化场景下卫星部组件域适应识别研究[J]. 遥测遥控, 2022, 43(2): 1-9
作者姓名:牟金震  朱文山  盛延平  李 爽  梁 彦
作者单位:上海航天控制技术研究所;南京航空航天大学
基金项目:国家自然科学基金(U20B2056);上海市科技创新行动计划(19511120900);国防基础科研项目(JCKY2018203B036,JCKY2021606B202)
摘    要:针对小样本限制下卫星部组件识别域适应困难的问题,提出一种变化场景下自适应迁移的目标识别算法.卫星部组件的识别模型框架为YOLO,迁移算法包括3个策略:基于特征关联性的样本加权策略,基于模型的参数自适应策略和最优特征变换自适应迁移策略.基于以上策略,YOLO模型建立域特征空间的相似性,选择性地迁移源域知识,同时在适应过程...

关 键 词:卫星部组件识别  域适应  迁移学习  在轨服务
收稿时间:2021-10-18
修稿时间:2022-03-11

Research on adaptive domain detection of satellite component under space variable environment
MU Jinzhen,ZHU Wenshan,SHENG Yanping,LI Shuang,LIANG Yan. Research on adaptive domain detection of satellite component under space variable environment[J]. Telemetry & Telecontrol, 2022, 43(2): 1-9
Authors:MU Jinzhen  ZHU Wenshan  SHENG Yanping  LI Shuang  LIANG Yan
Affiliation:Shanghai Aerospace Control Technology Institute;College of Astronautics, Nanjing University of Aeronautics and Astronautics
Abstract:To solve the few-shot satellite components domain detection, this paper proposes an object detection algorithm for adaptive migration in variable scenarios. The model is based on YOLO, the improvements include three parts: a sample weighting strategy based on feature relevance, and a model-based parameter adaptive strategy and an optimal feature transformation adaptive migration strategy. Based on the above strategies, YOLO builds the similarity of the domain feature space, selectively migrates the source domain knowledge, and adjusts the boundary of the strategy to learn the invariant feature representation during the adaptation process to enhance the adaptive migration ability of the model. In the migration experiment, the migration ability of the three strategies is verified respectively, which effectively improves the stable detection of YOLO-based satellite components detection in the complex space environment. The experimental results show that the weight importance based on feature association learning is better than the random initial weight, the parameter adaptive transfer significantly improves the testing accuracy of the target domain, and the optimal feature transformation significantly improves the generalization ability of the model.
Keywords:Satellite component detection   Domain adaptation   Transfer learning   On-orbit service
点击此处可从《遥测遥控》浏览原始摘要信息
点击此处可从《遥测遥控》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号