智能监控场景中运动目标轨迹聚类算法 |
| |
作者姓名: | 郝久月 李超 高磊 熊璋 |
| |
作者单位: | 北京航空航天大学,计算机学院,北京,100191;北京航空航天大学,计算机学院,北京,100191;北京航空航天大学,计算机学院,北京,100191;北京航空航天大学,计算机学院,北京,100191 |
| |
摘 要: | 轨迹分析是视频监控场景理解的基础,但由于遮挡等原因,跟踪过程会出现不完整的噪声轨迹,导致分析结果不准确.针对此类问题利用改进的轨迹相似度度量和聚类方法进行场景区域分割.首先,对轨迹进行编码,提出利用轨迹的空间特征和速度方向特征改进相似性度量方法计算轨迹间距离;其次,采用改进的层次聚类算法,以该类最长轨迹作为运动物体行为模式代表,将在空间上接近且具有相似速度特征的轨迹划分为同一场景区域,得到符合实际情况的聚类结果.本算法无需对轨迹进行复杂的预处理或过滤,并且加入速度方向特征使区域划分更加合理.最后,在真实场景下,验证了该聚类算法的有效性和普遍适用性.
|
关 键 词: | 轨迹分析 相似度度量 聚类算法 语义区域 |
收稿时间: | 2008-08-04 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《北京航空航天大学学报》浏览原始摘要信息 |
|
点击此处可从《北京航空航天大学学报》下载免费的PDF全文 |
|