首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络集成的分布式入侵检测方法
引用本文:吉根林,凌霄汉,程学云. 神经网络集成的分布式入侵检测方法[J]. 南京航空航天大学学报, 2007, 39(2): 231-235
作者姓名:吉根林  凌霄汉  程学云
作者单位:南京师范大学计算机科学系,南京,210097;南京师范大学计算机科学系,南京,210097;南京师范大学计算机科学系,南京,210097
摘    要:分布式入侵检测系统需具有分布式检测功能及部件增量更新能力.文中提出了一种基于神经网络集成的分布式入侵检测方法,采用单个Agent检测与多个Agent协同检测的两级集成算法实现分布式入侵检测;在发现新的入侵时,Agent上的神经网络集成采用基于资源分配网的增量学习算法进行更新.实验结果表明,该算法能有效检测各种攻击,并且具有对未知攻击的增量学习能力.

关 键 词:分布式入侵检测  神经网络集成  增量学习  攻击
文章编号:1005-2615(2007)02-0231-05
修稿时间:2006-09-02

Novel Distributed Intrusion Detection Method Based on Neural Network Ensemble
Ji Genlin,Ling Xiaohan,Cheng Xueyun. Novel Distributed Intrusion Detection Method Based on Neural Network Ensemble[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(2): 231-235
Authors:Ji Genlin  Ling Xiaohan  Cheng Xueyun
Affiliation:Department of Computer, Nanjing Normal University, Nanjing, 210097, China
Abstract:Distributed intrusion detection system requires abilities of distributed detection for intrusions and incremental update for its components.A novel distributed intrusion detection method based on neural network ensemble is proposed.The distributed detection is implemented by a ranked ensemble algorithm.It is firstly detected in single agent with an ensemble of neural networks and then is cooperated with other agents to obtain detected outcome while one agent cannot detect by itself.When discovering a new kind of attack,neural network ensemble is updated by a resource allocating network(RAN) based incremental learning algorithm.Experimental results show that the algorithms are effective in detecting attacks.
Keywords:distributed intrusion detection  neural network ensemble  incremental learning  attack
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号