首页 | 本学科首页   官方微博 | 高级检索  
     

涡扇发动机气路传感器故障诊断
引用本文:姚文荣,徐田镇,张海波. 涡扇发动机气路传感器故障诊断[J]. 航空发动机, 2017, 43(5): 54-61. DOI: 10.13477/j.cnki.aeroengine.2017.05.010
作者姓名:姚文荣  徐田镇  张海波
作者单位:1. 中国航发控制系统研究所,江苏无锡,214063;2. 南京航空航天大学江苏省航空动力系统重点实验室,南京,210016
摘    要:为了实现对某涡扇发动机传感器故障的在线诊断,提出并设计了1种基于在线贯序极端学习机的故障诊断算法。其核心思想是在定位某传感器故障后,在线建立针对该故障传感器"预学习"的信号重构算法,解决多故障混叠问题。在线信号重构算法以泛化能力指标为判定条件,利用选择策略对算法网络权值进行选择性更新,提高了故障诊断系统的实时性。以某型涡扇发动机为对象开展了传感器故障诊断与重构仿真,结果表明:该算法能够对发动机单、双传感器故障进行准确地诊断与信号重构,且具有良好的实时性。

关 键 词:在线贯序极端学习机  涡扇发动机  传感器  故障隔离  故障诊断  信号重构

Fault Diagnosis of Gas Path Sonsor for Turbofan Engine
YAO Wen-rong,XU Tian-zhen,ZHANG Hai-bo. Fault Diagnosis of Gas Path Sonsor for Turbofan Engine[J]. Aeroengine, 2017, 43(5): 54-61. DOI: 10.13477/j.cnki.aeroengine.2017.05.010
Authors:YAO Wen-rong  XU Tian-zhen  ZHANG Hai-bo
Affiliation:1 China Aerospace Power Control System Research Institute, Wuxi Jiangsu 214063, China; 2. Jiangsu Province Key Laboratory ofAerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:In order to diagnose malfunctioning turbofan engines'' sensor, a corresponding fault diagnosis system was designed with theOnline Sequential Extreme Learning (OS-ELM) algorithm. The core idea is that after finding some malfunction sensor, a predictive learningmechanismis applied to construct fault detection and isolation for the sensor. The fault diagnosis for multiple-sensor failures can be effectivelysolved by this mechanism. Meanwhile, the output layer weight vector of the algorithm net is updated selectively based on generalizationcapability, the method could significantly improve the really-time of fault diagnosis system. Simulations on a turbofan engine show that thediagnosis method of sensor faults could detect and isolate faults of single-sensor and double-sensor failures, which also prove the validityand feasibility of the algorithm.
Keywords:online sequential extreme learning  turbofan engine  sensor  fault isolation  fault diagnosis  signal reconstruction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空发动机》浏览原始摘要信息
点击此处可从《航空发动机》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号