首页 | 本学科首页   官方微博 | 高级检索  
     

捕捉间断的高精度数值方法
引用本文:袁湘江,桂业伟,涂国华,陈陆军. 捕捉间断的高精度数值方法[J]. 空气动力学学报, 2004, 22(3): 269-273
作者姓名:袁湘江  桂业伟  涂国华  陈陆军
作者单位:中国空气动力研究与发展中心,四川,绵阳,621000;北京航空航天大学国家CFD实验室,北京,100083;中国空气动力研究与发展中心,四川,绵阳,621000
基金项目:国家自然科学基金,国家研究发展基金
摘    要:为发展适用于捕捉超声速流场中各种间断的高精度算法,将通量限制的思想引入到紧致格式中,构造了一个传统方法与紧致格式混合组成的通量限制型差分格式.通过在时间方向上利用一阶精度格式计算的一维定常激波,以及在时间方向采用多步Runge-Kutta方法计算的一维非定常激波管问题上的数值试验与二阶精度的TVD格式所计算的结果比较,表明新方法比二阶精度方法在间断的捕捉上具有明显的优势.通过新方法的计算结果与精确解的比较,表明新方法的准度也是非常令人满意的.

关 键 词:数值方法  捕捉激波  迎风紧致格式
文章编号:0258-1825(2004)03-0269-05

Study of higher order accuracy algorithm of capturing discontinuity
YUAN Xiang-jiang. Study of higher order accuracy algorithm of capturing discontinuity[J]. Acta Aerodynamica Sinica, 2004, 22(3): 269-273
Authors:YUAN Xiang-jiang
Affiliation:YUAN Xiang-jiang~
Abstract:For developing a higher order accuracy algorithm applying to capturing various discontinuities in supersonic flow, in the process of constructing compact finite difference scheme, the ideal of fluxes limited is utilized. A new scheme mixed with classical scheme and compact scheme is presented. A first-order accuracy scheme for temporal discretization is used to compute one dimension steady shock and a multistage Runge-Kutta time stepping scheme is used to solve Sod problem. The present results were compared with those results computed by the 2nd-order TVD scheme. It showed that the new scheme provides a significant improvement over the 2nd-order TVD scheme in capturing shock. The present results are in good agreement with accurate solutions.
Keywords:numerical method  capture shock  upwind compact difference scheme
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号