首页 | 本学科首页   官方微博 | 高级检索  
     

基于ResNet-LSTM的航空发动机性能异常检测方法
作者姓名:蔡舒妤  殷航  史涛  范杰
作者单位:1.中国民航大学航空工程学院,天津 300300;2.中国南方航空股份有限公司河南分公司,郑州 450000
摘    要:为了实现数据驱动的航空发动机性能异常的智能检测,提出了一种基于残差网络(ResNet)-长短期记忆网络(LSTM)的发动机性能异常检测方法.采用发动机性能数据图像化方法,在数据降维的同时,完备保留数据的关联特征和时序特征;以残差单元构建发动机性能异常检测模型,在加深网络结构的同时,消除深层网络梯度消失问题,提高发动机性能图像空间关联特征的提取能力.同时,引入LSTM,提出基于ResNet-LSTM的发动机性能异常检测模型,通过ResNet与LSTM的融合,强化异常检测模型对时序特征的提取,提升发动机性能异常检测的准确率;通过发动机运行数据进行验证.结果表明:在训练集上,该方法的异常检测准确率为94.95%,比基于ResNet18、ResNet34、ResNet50异常检测模型的分别提高10.87%、8.00%、3.23%;在测试集上,该方法的异常检测准确率为92.15%,比基于ResNet 18、ResNet34、ResNet50异常检测模型的分别提高11.81%、9.45%、3.78%.

关 键 词:异常检测  残差网络  长短期记忆网络  航空发动机
本文献已被 万方数据 等数据库收录!
点击此处可从《航空发动机》浏览原始摘要信息
点击此处可从《航空发动机》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号