首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The composition of heavy ions in solar energetic particle events
Authors:C Y Fan  G Gloeckler  D Hovestadt
Institution:(1) Department of Physics, University of Arizona, 85721 Tucson, AZ, USA;(2) Department of Physics and Astronomy, University of Maryland, 20742 College Park, MD, USA;(3) Max-Planck Institut für Physik und Astrophysik, 8046 Garching, München, F.R.G.
Abstract:We review recent advances in determining the elemental, charge-state, and isotopic composition of lap 1 to lap 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations.The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the sim 1 to sim 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion.Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He+ along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22Ne/20Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.It is concluded that SEP acceleration is a two-step process, beginning with plasma-wave heating of the ambient plasma in the lower corona, which may include pockets of cold material, and followed by acceleration to the observed energies by either flare-generated coronal shocks or Fermi-type processes in the corona. Interplanetary propagation as well as acceleration by interplanetary propagating shock will often further modify the composition of SEP events, especially at lower energies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号