首页 | 本学科首页   官方微博 | 高级检索  
     

基于知识图谱和自动机器学习的软件缺陷预测
引用本文:李鹏宇,江云松,高猛,滕俊元. 基于知识图谱和自动机器学习的软件缺陷预测[J]. 空间控制技术与应用, 2021, 47(2): 10-16. DOI: 10.3969/j.issn.1674-1579.2021.02.002
作者姓名:李鹏宇  江云松  高猛  滕俊元
作者单位:北京轩宇信息技术有限公司
基金项目:装备预研基金;国家自然科学基金资助项目
摘    要:不稳定和召回率低效的软件缺陷预测模型难以在行业领域应用,为解决稳定和高效各项性能评价指标的软件缺陷预测模型在工程实践应用的问题,提出了一种基于知识图谱和自动化机器学习的软件缺陷预测方法AutoKGGAS,首先获取软件缺陷预测模型数据,对知识建模、知识获取、知识融合、知识储存与知识计算等知识图谱构建技术研究,实现知识图谱...

关 键 词:知识图谱  数据挖掘  自动化机器学习  软件缺陷预测

Software Defect Prediction Based on Knowledge Graphs and Automatic Machine Learning
LI Pengyu,JIANG Yunsong,GAO Meng,TENG Junyuan. Software Defect Prediction Based on Knowledge Graphs and Automatic Machine Learning[J]. Aerospace Contrd and Application, 2021, 47(2): 10-16. DOI: 10.3969/j.issn.1674-1579.2021.02.002
Authors:LI Pengyu  JIANG Yunsong  GAO Meng  TENG Junyuan
Abstract:The software defect prediction model characterized by instability and low recall rate is difficult to apply in the industry field. To solve the problem of the software defect prediction model with stable and efficient performance evaluation indicators in the engineering practice, a software defect prediction method Automated knowledge graphs genetic algorithm stacking (AutoKGGAS) is proposed based on the automated knowledge graphs assisted machine learning, which obtains the software defect prediction model data for the research on knowledge graph construction technologies (such as knowledge modeling, knowledge acquisition, knowledge fusion, knowledge storage and knowledge calculation), take the high quality software defect prediction model recommended by the knowledge graphs as the hot startup input of automatic search. According to different software defect prediction evaluation indicators, different optimal stacking model structures are optimized. On the other hand, the empirical research uses NASA open source dataset experimental object and six performance evaluation indicators. The experimental results show that the AutoKGGAS automated software defect prediction model is superior to the traditional classic software defect prediction model recommended by the knowledge graphs in different evaluation indicators of different datasets. The automated software defect prediction model provides a prototype for the aerospace software defect prediction to assist the code review test, which is of great significance in engineering practices.
Keywords:knowledge graphs,data mining  automated machine learning  software defect prediction,
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《空间控制技术与应用》浏览原始摘要信息
点击此处可从《空间控制技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号