首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的惯导系统初始对准
引用本文:王丹力,张洪钺. 基于RBF网络的惯导系统初始对准[J]. 航天控制, 1999, 0(2)
作者姓名:王丹力  张洪钺
作者单位:北京航空航天大学
摘    要:建立了惯导系统(INS)初始对准的线性和非线性误差模型。分析了径向基函数(RBF)网络的结构和工作原理。研究了RBF网代替初始对准中的卡尔曼滤波器的实现方法。通过仿真表明,用神经网络进行初始对准,既可获得与卡尔曼滤波相同的对准精度,又提高了系统的实时性。

关 键 词:惯性导航  初始瞄准  卡尔曼滤波

Initial Alignment of Inertial Navigation System Based on the RBF Neural Network
Wang Danli Zhang Hongyue Beijing University of Aeronautics and Astronautics,Beijing. Initial Alignment of Inertial Navigation System Based on the RBF Neural Network[J]. Aerospace Control, 1999, 0(2)
Authors:Wang Danli Zhang Hongyue Beijing University of Aeronautics  Astronautics  Beijing
Affiliation:Wang Danli Zhang Hongyue Beijing University of Aeronautics and Astronautics,Beijing 100083
Abstract:Linear and nonlinear error models for Inertial Navigation System( INS ) initial alignment are established. The structure and principle of Radial Basis Function ( RBF ) neural network are studied. A method of RBF neural network instead of Kalman filter in the initial alignment is introduced. The simulation results show that using neural network in initial alignment can obtain alignment accuracy which is similar to that of the Kalman filter. In the meantime the alignment time is reduced considerably.
Keywords:Inertial navigation Initial aiming Kalman filtering
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号