首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of the threshold acceleration for the gravitropic stimulation of cress roots and hypocotyls.
Authors:R Laurinavicius  D Svegzdiene  B Buchen  A Sievers
Institution:Institute of Botany, Vilnius, Lithuania.
Abstract:To determine the range of the threshold acceleration (a-threshold) for the gravitropic stimulation of Lepidium sativum L. roots and hypocotyls, experiments were performed on a centrifuge-clinostat with two-orthogonal axes. The rotation rate of the clinostat was 4 rpm (< or = 1.8 x 10(-4) g), while that of the centrifuge was from 3 to 17 rpm (3 x 10(-3) to 10(-1) g). The gravitropic response was determined: (i) after growth of roots and hypocotyls in their normal vertical position and subsequent gravitropic stimulation for 3 h by accelerations of 4 x 10(-3) to 10(-1) g, and (ii) after continuous stimulation in the lateral direction by centripetal accelerations of 4 x 10(-3) to 10(-1) g. The a-threshold was defined by an extrapolation of the regression line of R = p + rx, where x was either ln a or l/a for 3 h or a continuous stimulation, respectively. The a-threshold estimated after 3 h stimulation was equal to 2.6 x 10(-3) g for roots and 3.1 x 10(-3) g for hypocotyls. The threshold accelerations that were unable to evoke a gravitropic response even with continuous stimulation of cress roots and hypocotyls were approximately 3.1 x 10(-3) g and 3.6 x 10(-3) g, respectively. Increasing the stimulation acceleration up to 4.1 x 10(-3) g led to a statistically confirmed gravitropic response of a definite proportion of both the root and hypocotyl populations. In the experiments where acceleration and stimulation time were variable, the threshold dose (D-threshold) for roots was determined to be about 14 to 22 g x s, depending on the stimulation duration and the range of accelerations. The kinetics of gravitropic response at a near-threshold acceleration (4 x 10(-3) to 1.9 x 10(-2) g) differed from that at 1 g (horizontal stimulation). At low forces, the maximal response dependent on the magnitude of acceleration could not be enhanced by increasing the stimulation time up to at least 210 min.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号