首页 | 本学科首页   官方微博 | 高级检索  
     


Design and feedforward control of large-rotation two-axis scan mirror assembly with MEMS sensor integration
Authors:Hai HUANG  Xintao ZHENG  Weipeng LI
Abstract:As a key component of electro-optical systems, a Two-axis Scan mirror AssemblY (TSAY) is usually used for Line-of-Sight (LOS) precision pointing, tracking, scanning, and stabilizing. Therefore, it is necessary for a TSAY to have a large angular range, high dynamic characteristics, and small mirror surface distortion. Furthermore, vibration from carriers of electro-optical systems, such as spacecraft and airplanes, is inevitable, so it is critical to guarantee the control accuracy of a TSAY under vibration. In this paper, a TSAY prototype is designed and developed. To increase the control bandwidth, structural topology optimization is applied to the TSAY’s elliptical mirror to reduce the moment of inertia, meanwhile keeping surface flatness. A flexible hinge is adopted to achieve a large angular range. To suppress the angular perturbation caused by the base linear vibration, an adaptive feedforward loop with base-integrated Micro-Electro-Mechanical System (MEMS) accelerators is constructed to enhance the TSAY’s feedback loop. Simulation and experimental results show that the TSAY prototype’s two-axis mechanical angular ranges are more than ±3.2°, the mirror surface flatness Root Mean Square (RMS) value is better than 0.04λ, and the closed-loop bandwidth is beyond 330 Hz. These are suitable for most applications. Besides, the angular perturbation caused by the base vibration can be suppressed more than 37.7% with the addition of the adaptive feedforward loop.
Keywords:Adaptive feedforward  Micro-Electro-Mechanical System accelerator  Scan mirror  Topological optimization  Vibration suppression
本文献已被 CNKI 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号