首页 | 本学科首页   官方微博 | 高级检索  
     

一类逆风ENO线方法的构造及其对Euler方程的应用
引用本文:戴嘉尊,赵宁. 一类逆风ENO线方法的构造及其对Euler方程的应用[J]. 南京航空航天大学学报, 1992, 0(4)
作者姓名:戴嘉尊  赵宁
作者单位:南京航空学院数理力学系,中国科学院计算中心 南京 210016,北京 100080
摘    要:本文利用ENO(essentially-non-oscillatory)插值思想,对非线性双曲型守恒律=0提出了一类逆风ENO线方法,使用这种格式其计算量比C.Shu在文[6]中提出的通量分裂方法明显减少,进而同Runge-kutta时间离散相结合,提出了时空高精度差分格式。本文还把这类方法推广到方程组并用于计算Euler方程组的黎曼问题和拟一维喷管问题,得到了比较满意的数值结果。

关 键 词:守恒定律  差分格式  插值  高精度  逆风线方法  基本无振荡

A Class of Upwind ENO Methods of Lines with Applications of Systems of Euler Equation
Dai Jiazun. A Class of Upwind ENO Methods of Lines with Applications of Systems of Euler Equation[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1992, 0(4)
Authors:Dai Jiazun
Abstract:In this paper, a class of upwind ENO (essentially non-oscillatory) methods of lines are constructed by applying ENO interpolation method to nonlinear hyperbolic laws. The amount of computation of these methods is less than that of the method in [6]. Moreover, on the basis of this class of schemes, using Runge-Kutta time-discretization, we construct a new class of second order accurate schemes in space and time. At last these methods are applied to systems of Euler equation, Riemann problem and quasi-one dimensional nozzle problem. The numerical results are quite satisfactory.
Keywords:conservation laws   difference schemes   interpolation   high accuracy   upwind lines method   ENO
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号