首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electric potentiation of gravikinesis in Paramecium is possibly mediated by filaments.
Authors:H Machemer
Institution:AG Zellulare Erregungsphysiologie, Ruhr-Universitat, Bochum, Germany.
Abstract:Sensitivity of Paramecium to mechanical stress including gravitational force is organized along two opposing gradients of membrane channel distribution: depolarizing Ca channels and hyperpolarizing K channels. Mechanoreceptor channels reside in the membrane of the cell soma and are activated, when the weight of the cytoplasm deforms the "lower" plasma membrane. Channel distribution is such as to generate ciliary activation which can counteract sedimentation of the cells: a reduction in downward swimming rate and an augmentation in upward swimming rate. Application of weak DC fields does not only induce the well-known cathodal orientation and swimming of Paramecium toward the cathode (galvano-taxis). We document that swimming velocity is augmented up to 175% as a function of the voltage gradient between 0.3 V/cm and 0.8 V/cm (galvanokinesis). A gradient of 0.3 V/cm was highly effective in raising the common negative gravikinesis of downward swimmers threefold. The gravikinesis of upward swimmers reversed polarity under field stimulation inducing cells to augment sedimentation effects (positive gravikinesis). Both effects of electric-field stimulation on ciliary activation are of the depolarizing type: reduction in the frequency of normally beating cilia. Analysis of the data shows that a voltage-sensitivity of gravireceptor channels would not account for the observed potentiation of negative gravikinesis. It is suggested that a previously described voltage-dependent Ca channel of the soma membrane interferes with a Ca(2+)-sensitive, peripheral filament system, which directly connects to gravireceptor channels.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号