首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗神经网络的民用飞机故障诊断
引用本文:刘永建,朱剑英,夏洪山. 基于粗神经网络的民用飞机故障诊断[J]. 北京航空航天大学学报, 2009, 35(8): 1005-1008
作者姓名:刘永建  朱剑英  夏洪山
作者单位:南京航空航天大学,民航学院,南京,210016;南京航空航天大学,民航学院,南京,210016;南京航空航天大学,民航学院,南京,210016
摘    要:针对传统神经网络故障诊断过程中网络训练时间长、结构复杂以及仅能进行单值输入的缺陷,设计了一种基于粗神经网络的民用飞机故障诊断系统.将粗糙集理论应用在神经网络的前端对民用飞机故障样本数据进行约简处理,以此去除冗余属性的干扰,克服了无关样本数据对网络学习性能的影响,简化了网络结构;利用粗神经元代替传统神经元,提高了网络性能,扩展了网络的应用范围.通过对空中客车A320飞机的故障诊断试验验证了该方法的有效性.

关 键 词:民用航空  故障诊断  粗神经网络  粗糙集理论  约简  辅助动力系统
收稿时间:2008-06-27

Fault diagnosis for civil aviation aircraft based on rough-neural network
Liu Yongjian,Zhu Jianying,Xia Hongshan. Fault diagnosis for civil aviation aircraft based on rough-neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 1005-1008
Authors:Liu Yongjian  Zhu Jianying  Xia Hongshan
Affiliation:College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:To solve the defects of traditional fault diagnosis neural network,such as long training time,complex structure and single-valued input,a fault diagnosis system for civil aircraft based on rough-neural network was proposed.Rough set theory was applied to the front-end neural network to reduce the data of civil aircraft fault sample so as to remove the disturbance of redundant attributes,and overcome the impaction of unrelated data that imposed on the performance of network learning,simplify network structur...
Keywords:civil aviation  fault diagnosis  rough-neural network  rough set theory  reduction  auxiliary power system
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号