首页 | 本学科首页   官方微博 | 高级检索  
     


Advanced optical diagnostics applied to dynamic flames and turbulent jets
Affiliation:2. KTH Royal Institute of Technology, Stockholm, Sweden
Abstract:Experimental studies were conducted to obtain single shot measurements of temperature and concentration in a variety of dynamic flames. The structure of a low speed hydrogen-air buoyant flame is investigated to characterize vortex-flame interactions. In this flame, the temperature and the molar fraction of nitric oxide (NO), atomic oxygen (O), atomic hydrogen (H) and hydroxyl (OH) have been obtained using a combination of coherent anti-Stokes Raman spectroscopy (CARS), laser-induced fluorescence (LIF) and degenerate four-wave mixing (DFWM). Good agreement was found between the simulated and the measured data. A monodispersed droplet stream flame was investigated to study the diphasic combustion of ethanol. In this case, the temperature, nitric oxide (NO) and fuel concentration have been measured. Finally, two-dimensional maps of OH and acetone are recorded using planar LIF (PLIF). Application of this technique to a supersonic H2/air flame and to a subsonic ethylene/air reacting jet mainly illustrates the turbulent character of combustion and provides a deeper insight into the chemical mechanisms of these flows. The present paper emphasizes the importance of applying quantitative and instantaneous optical techniques to different combustion and turbulent media.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号