首页 | 本学科首页   官方微博 | 高级检索  
     

五棱镜面形误差对中心入射光线的转向角影响
引用本文:温中凯,徐明明,张庆君,李爽. 五棱镜面形误差对中心入射光线的转向角影响[J]. 中国空间科学技术, 2021, 41(5): 28-36. DOI: 10.16708/j.cnki.1000-758X.2021.0064
作者姓名:温中凯  徐明明  张庆君  李爽
作者单位:1 南京航空航天大学 航天学院,南京2111062 中国空间技术研究院 遥感卫星总体部,北京100094
摘    要:针对五棱镜面形误差引起出射光线转向角误差,进而影响空间光电跟瞄系统多光轴标校精度的问题,提出了一种研究五棱镜面形误差对出射光线转向角影响的新方法.首先,在五棱镜不规则度较小的前提下,利用最佳拟合球面矢高适当简化了五棱镜的工作面模型,推导出了出射光线转向角计算公式,并将影响出射光线转向角误差的因素限定在了6个非独立随机变...

关 键 词:五棱镜  面形误差  转向角误差  最佳拟合球面矢高  降维分析

Influence of the surface error of pentaprism on the steering angle of central incident ray
WEN Zhongkai,XU Mingming,ZHANG Qingjun,LI Shuang. Influence of the surface error of pentaprism on the steering angle of central incident ray[J]. Chinese Space Science and Technology, 2021, 41(5): 28-36. DOI: 10.16708/j.cnki.1000-758X.2021.0064
Authors:WEN Zhongkai  XU Mingming  ZHANG Qingjun  LI Shuang
Affiliation:1 College of Astronautics, Nanjing University of Aeronautics and Astronautics,Nanjing 211106, China2 Institute of Remote Sensing Satellite, CAST,Beijing 100094, China
Abstract:In order to solve the problem that the surface error of pentaprism will cause the steering angle error of the emergent ray, which affects the accuracy of the multi-optical axis calibration of space photoelectric tracking and aiming system, a new method was proposed to study the effect of the surface error of the pentaprism on the steering angle of the emergent ray. Firstly, the best fit spherical vector height was used to appropriately simplify the working surface model of pentaprism under the premise that the irregularity of the pentaprism is small. The steering angle formula of the emergent ray was derived, and the influence factors of the steering angle error of the emergent ray were limited to the joint action of six correlative random variables. Then, a dimensionality reduction analysis method by combining the typical application scenarios of pentaprism was proposed, which removes the correlation among the six variables, and the steering angle error calculation formula after dimensionality reduction was derived. The calculation results of the formula show that the maximum relative errors of the steering angle error in the direction of the principal section and the direction perpendicular to the principal section are only 2.14% and 0.31%, which meets the requirements of accuracy analysis. Finally, the technical test of the pentaprism was carried out through experiments, and the results show that the deviations of the steering angle errors in the direction of the principal section and the direction perpendicular to the principal section between the average values of the experimental test and the calculated results of the dimensionality reduction formula a ±0.25″ and ±0.15″, which is acceptable. Therefore, the simplified model and the dimensionality reduction analysis method proposed are both feasible, and provide a new research idea and analysis method for the related research of surface error of pentaprism.
Keywords:pentaprism  surface error  steering angle error  best fit spherical vector height  dimensionality reduction analysis  
点击此处可从《中国空间科学技术》浏览原始摘要信息
点击此处可从《中国空间科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号