首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nodal Discontinuous Galerkin Method for Aeroacoustics and Comparison with Finite Difference Schemes
Institution:[1]School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P.R. China; [2]School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P.R. China
Abstract:A nodal discontinuous Galerkin formulation based on Lagrange polynomials basis is used to simulate the acoustic wave propagation. Its dispersion and dissipation properties for the advection equation are investigated by utilizing an eigenvalue analysis. Two test problems of wave propagation with initial disturbance consisting of a Gaussian profile or rectangular pulse are performed. And the performance of the schemes in short,intermediate,and long waves is evaluated. Moreover,numerical results between the nodal discontinuous Galerkin method and finite difference type schemes are compared,which indicate that the numerical solution obtained using nodal discontinuous Galerkin method with a pure central flux has obviously high frequency oscillations for initial disturbance consisting of a rectangular pulse,which is the same as those obtained using finite difference type schemes without artificial selective damping. When an upwind flux is adopted,spurious waves are eliminated effectively except for the location of discontinuities. When a limiter is used,the spurious short waves are almost completely removed. Therefore,the quality of the computed solution has improved.
Keywords:
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号