首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏分解的空间目标双基地ISAR自聚焦算法
引用本文:韩宁,李宝晨,王立兵,童俊,郭宝锋. 基于稀疏分解的空间目标双基地ISAR自聚焦算法[J]. 航空学报, 2018, 39(8): 322037-322037. DOI: 10.7527/S1000-6893.2018.22037
作者姓名:韩宁  李宝晨  王立兵  童俊  郭宝锋
作者单位:1. 军械技术研究所, 石家庄 050003;2. 陆军工程大学 科研学术处, 南京 210014;3. 中国人民解放军63961部队, 北京 100012;4. 陆军工程大学石家庄校区, 石家庄 050003
基金项目:国家自然科学基金(61601496)
摘    要:空间目标双基地逆合成孔径雷达(ISAR)成像中,双基地角时变会造成二维图像的散焦。针对此问题,在三大同步理想可实现的条件下,以平稳空间目标为研究对象,分析了空间目标双基地ISAR成像原理,研究了双基地角时变对二维图像散焦的影响机理,提出了利用稀疏分解实现高精度自聚焦的算法。首先,将半双基地角的余弦进行泰勒展开;其次,结合目标的平动及转动条件,将成像相位项用多项式建模;然后,利用稀疏分解算法估计多项式的二次项系数,据此构建补偿项完成相位补偿。算法利用L-曲线准则选取正则参数,基于目标尺寸的先验信息构建冗余基的高分辨因子,利用推广的正则化欠定系统聚焦求解(FOCUSS)算法实现稀疏表示系数的估计,在恰当选取词典分辨率的条件下,算法可实现二次相位项的精确补偿,仿真实验验证了算法性能优于常用的非参数化自聚焦算法。

关 键 词:空间目标  雷达成像  双基地逆合成孔径雷达  稀疏分解  自聚焦  
收稿时间:2018-01-23
修稿时间:2018-05-02

Algorithm for autofocusing of bistatic ISAR of space target based on sparse decomposition
HAN Ning,LI Baochen,WANG Libing,TONG Jun,GUO Baofeng. Algorithm for autofocusing of bistatic ISAR of space target based on sparse decomposition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 322037-322037. DOI: 10.7527/S1000-6893.2018.22037
Authors:HAN Ning  LI Baochen  WANG Libing  TONG Jun  GUO Baofeng
Affiliation:1. Ordnance Technique Research Institute, Shijiazhuang 050003, China;2. Scientific Research and Academic Department, Army Engineering University, Nanjing 210014, China;3. No. 63961 Unit, PLA, Beijing 100012, China;4. Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
Abstract:In bistatic Inverse Synthetic Aperture Radar (ISAR) imaging of the space target, variation of the bistatic angle with time can cause defocusing of the two-dimensional image. To solve this problem, the principle for bistatic ISAR imaging of the stable space target is analyzed under the condition that the three synchronizations are realized ideally. The mechanism of influence of variation of the bistatic angle with time on defocusing of the two-dimensional image is researched, and an algorithm for autofocusing with high accuracy is proposed based on sparse decomposition. The cosine of half of the bistatic angel is approximated with Taylor expansion, and then the imaging phase is modelized as a polynomial according to the translation and rotation conditions of the space target. The second-order coefficient of the polynomial is obtained based on the sparse decomposition algorithm, and the compensation item is constructed to complete phase compensation with the obtained coefficient. Regular parameters are determined according to the L-curve criterion. High resolution factors of the redundant basis is designed based on prior information of the target size. Sparse representation coefficients are estimated with the extended generalization FOCal Underdetermined System Solver (FOCUSS) algorithm. The second-order phase item can be compensated accurately if the redundant dictionary resolution is chosen appropriately. The simulation experiment proves that performance of the algorithm proposed is prior to that of the common algorithm for non-parameter autofocusing.
Keywords:space target  radar imaging  bistatic ISAR  sparse decomposition  autofocusing  
本文献已被 CNKI 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号