首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved model of ionosphere variability and study for long-term statistical characteristics
Institution:School of Instrumentation and Opto-Electric Engineering,Beihang University,Beijing 100083,China
Abstract:Ionospheric variability is influenced by many factors, such as solar radiation, neutral atmosphere composition, and geomagnetic disturbances. Mainly characterized by the total electron content (TEC) and electron density, the climatology of the ionosphere features temporal and spatial changes. Establishing a multivariant regression model helps substantially in better understanding the ionosphere characteristics and their long-term variability. In this paper, an improvement of the existing ionosphere multivariate linear fitting regression model is proposed and investigated using data from both the ionosonde and the global ionosphere map (GIM) derived from ground-based Global Navigation Satellite System (GNSS) observations. The proposed method gives more consideration to the impact of the solar activity and adds modeling of the annual periodic fluctuations and half-year periodic fluctuations for the F10.7 index. The improved model is verified to have a better correlation with the real observations and can help reduce the calculation uncertainty. Moreover, the proposed model is used to evaluate the fitting accuracy of the GIMs produced by five authorized data analysis centers from the International GNSS Service (IGS). The results show that there is a fixing hole in the North America region for the GIM model where the correlation between the GIM and the proposed model always returns lower values compared to other places.
Keywords:Analysis of anomalies  Long-term statistics  Regression model  Total electron content
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号