首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Morphing wing flaps for large civil aircraft: Evolution of a smart technology across the Clean Sky program
Institution:Department of Industrial Engineering,Aerospace Division,University of Naples"Federico Ⅱ",80125 Napoli,Italy
Abstract:Morphing wing structures are widely considered among the most promising technologies for the improvement of aerodynamic performances in large civil aircraft. The controlled adaptation of the wing shape to external operative conditions naturally enables the maximization of aircraft aerodynamic efficiency, with positive fallouts on the amount of fuel burned and pollutant emissions. The benefits brought by morphing wings at aircraft level are accompanied by the criticalities of the enabling technologies, mainly involving weight penalties, overconsumption of electrical power, and safety issues. The attempt to solve such criticalities passes through the development of novel design approaches, ensuring the consolidation of reliable structural solutions that are adequately mature for certification and in-flight operations. In this work, the development phases of a multimodal camber morphing wing flap, tailored for large civil aircraft applications, are outlined with specific reference to the activities addressed by the author in the framework of the Clean Sky program.The flap is morphed according to target shapes depending on aircraft flight conditions and defined to enhance high-lift performances during takeoff and landing, as well as wing aerodynamic efficiency during cruise. An innovative system based on finger-like robotic ribs driven by electromechanical actuators is proposed as morphing-enabling technology; the maturation process of the device is then traced from the proof of concept to the consolidation of a true-scale demonstrator for pre-flight ground validation tests. A step-by-step approach involving the design and testing of intermediate demonstrators is then carried out to show the compliance of the adaptive system with industrial standards and safety requirements. The technical issues encountered during the development of each intermediate demonstrator are critically analyzed, and justifications are provided for all the adopted engineering solutions. Finally, the layout of the true-scale demonstrator is presented, with emphasis on the architectural strengths, enabling the forthcoming validation in real operative conditions.
Keywords:Electro-mechanical actuators (EMA)  Green regional aircraft  Mechanical systems  Morphing flap  Morphing wing  Smart aircraft  Smart structures  Variable camber airfoil
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号