首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Products from NASA's in-space propulsion technology program applicable to low-cost planetary missions
Institution:1. NASA Glenn Research Center, 21000 Brookpark Road, S Cleveland, OH 44135, USA;2. Gray Research Inc., 21000 Brookpark Road, Cleveland, OH 44135, USA;3. NASA Langley Research Center, 1 North Dryden Street, Hampton, VA 23681, USA;1. Solar System Missions Division, ESA/ESTEC, Noordwijk, Netherlands;2. Office for Support to New Member States, ESA/ESTEC, Netherlands;3. Science Payload Instrument Section, ESA/ESTEC, Netherlands;1. Institute of Space and Astronautical Science, Sagamihara, Kanagawa 252 5210, Japan;2. Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan;3. Hokkaido University, Hokkaido, Japan;4. Senshu University, Tokyo, Japan;5. University of Tokyo, Tokyo, Japan;7. Okayama University, Okayama, Japan;1. Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia;2. Research Centre for Astrophysics and Geophysics MAS, Ulaanbaatar, Mongolia;3. Irkutsk State Technical University, Irkutsk, Russia;1. Politecnico di Milano, Polo Territoriale di Lecco, Via M. d′Oggiono 18/a, 23900 Lecco, Italy;2. Micos Engineering GmbH, Dübendorf (ZH), Switzerland
Abstract:Since September 2001, NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Under development are several technologies for low-cost sample return missions. These include a low-cost Hall-effect thruster (HIVHAC) which will be completed in 2011, light-weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA's future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号