首页 | 本学科首页   官方微博 | 高级检索  
     检索      


End-to-end validation process for the INTA-Nanosat-1B Attitude Control System
Institution:1. Space Research Group, University of Alcala, Alcalá de Henares, Madrid, Spain;2. ISCAR Research Group, Complutense University of Madrid, Madrid, Spain;3. National Institute of Aerospace Technology (INTA), Madrid, Spain;1. University of Basilicata, School of Engineering, 10, Ateneo Lucano Street, 85100 Potenza, Italy;2. National Research Council, Institute of Methodologies for Environmental Analysis (IMAA), c/da S.Loja, 85050 Tito Scalo (PZ), Italy;1. Solar System Missions Division, ESA/ESTEC, Noordwijk, Netherlands;2. Office for Support to New Member States, ESA/ESTEC, Netherlands;3. Science Payload Instrument Section, ESA/ESTEC, Netherlands;1. Science and Technology on Aerospace Flight Dynamics Laboratory, Beijing 100094, China;2. Beijing Aerospace Control Center, Beijing 100094, China;1. Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia;2. Research Centre for Astrophysics and Geophysics MAS, Ulaanbaatar, Mongolia;3. Irkutsk State Technical University, Irkutsk, Russia;1. Japan Aerospace Exploration Agency, Chofu, Tokyo 182-8522, Japan;2. University of Aizu, Fukushima, Japan;3. University of Tokyo, Tokyo, Japan
Abstract:This paper describes the end-to-end validation process for the Attitude Control Subsystem (ACS) of the satellite INTA-NanoSat-1B (NS-1B). This satellite was launched on July 2009 and it has been fully operative since then. The development of its ACS modules required an exhaustive integration and a system-level validation program. Some of the tests were centred on the validation of the drivers of sensors and actuators and were carried out over the flying model of the satellite. Others, more complex, constituted end-to-end tests where the concurrency of modules, the real-time control requirements and even the well-formedness of the telemetry data were verified. This work presents an incremental and highly automatised way for performing the ACS validation program based on two development suites and an end-to-end validation environment. The validation environment combines a Flat Satellite (FlatSat) configuration and a real-time emulator working in closed-loop. The FlatSat is built using the NS-1B Qualification Model (QM) hardware and it can run a complete version of the on-board software with the ACS modules fully integrated. The real-time emulator, running on an industrial PC, samples the actuation signals and emulates the sensors signals to close the control loop with the FlatSat. This validation environment constitutes a low-cost alternative to the classical three axes tilt table, with the advantage of being easily configured for working under specific orbit conditions, in accordance with any of the selected tests. The approach has been successfully applied to the NS-1B in order to verify different ACS modes under multiple orbit scenarios, providing an exhaustive coverage and reducing the risk of eventual errors during the satellite's lifetime. The strategy was applied also during the validation of the maintenance and reconfiguration procedures required once the satellite was launched. This paper describes in detail the complete ACS validation process that was performed and it shows the most relevant errors detected and fixed during testing. Finally it summarises some of the most significant conclusions.
Keywords:End-to-end validation test  Satellite Attitude Control System  Real-time emulation  Hardware in-the-loop  Component-based software development
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号