首页 | 本学科首页   官方微博 | 高级检索  
     检索      

利用试验设计法建立翼型气动特性的人工神经网络模型
引用本文:琚亚平,张楚华.利用试验设计法建立翼型气动特性的人工神经网络模型[J].航空学报,2010,31(5):893-898.
作者姓名:琚亚平  张楚华
作者单位:西安交通大学能源与动力工程学院,陕西西安,710049
基金项目:国家高技术研究发展计划(863计划),国家自然科学基金,教育部新世纪优秀人才支持计划 
摘    要:建立了翼型气动特性预测的BP(Back Propagation)神经网络模型,重点研究了3种选取训练样本的试验设计(DOE)法:完全析因法、正交设计法和均匀设计法,对BP神经网络预测精度的影响,利用所建立的BP神经网络对FX63-137翼型几何型线进行了优化设计。研究结果表明:在因素数和水平数较少时,完全析因法、正交设计法及均匀设计法的平均测试误差分别为0.002%、0.029%、0.023%;在因素和水平数较多时,完全析因法的样本规模太大而不再适合,正交设计法和均匀设计法的平均测试误差分别为0.42%和0.15%,均匀设计法的预测精度更高,更适合于翼型气动特性预测的人工神经网络模型。优化后翼型的升阻比在迎角为0°~18°范围内均高于原始翼型,在迎角为1°、4°和15°时升阻比分别提高了4.38%、1.38%和5.51%。该研究方法及成果可以应用于翼型的多参数优化设计。

关 键 词:神经网络模型  训练样本  试验设计法  翼型气动特性  优化设计  

Artificial Neural Network Model of Airfoil Aerodynamic Performance Using Design of Experiments
Ju Yaping,Zhang Chuhua.Artificial Neural Network Model of Airfoil Aerodynamic Performance Using Design of Experiments[J].Acta Aeronautica et Astronautica Sinica,2010,31(5):893-898.
Authors:Ju Yaping  Zhang Chuhua
Institution:School of Energy and Power Engineering, Xi’an Jiaotong University
Abstract:Back propagation (BP) neural networks are established to predict the aerodynamic performance of an airfoil. Three typical types of design of experiments (DOE) methods, i.e., the factorial, orthogonal and uniform DOE, are employed to sample the training airfoils. The emphasis is laid upon the effect of the three DOE methods on the prediction accuracy of BP neural networks. The established BP neutral networks are finally applied to the optimization design of airfoil FX 63-167.The results show that, the factorial, orthogonal and uniform DOE have test-sample-averaged errors of 0.002%, 0.029% and 0.023% respectively in the case of small numbers of factors and levels. In the case of large numbers of factors and levels, the factorial DOE is unaccep-table due to excessive training points, while the orthogonal and uniform DOE have errors of 0.42% and 0.15%, respectively, indicating that the uniform DOE is the best method among the three, which can be coupled with the BP neural network for the prediction of the airfoil aerodynamic performance. The optimized airfoil shows a higher lift-drag ratio than the original one within the wide range of angles of attack from 0° to 18°. The lift-drag ratio increases by 4.38%, 1.38% and 5.51% respectively at angles of attack of 1°, 4° and 15°. The proposed method and conclusion can be extended to the multi-parameter optimization design of the turbo-machinery.
Keywords:neural networks  training sample  design of experiments  airfoil aerodynamic performance  optimization design
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号