首页 | 本学科首页   官方微博 | 高级检索  
     

一种时空特征聚合的水下珊瑚礁鱼检测方法
引用本文:陈智能,史存存,李轩涯,贾彩燕,黄磊. 一种时空特征聚合的水下珊瑚礁鱼检测方法[J]. 北京航空航天大学学报, 2021, 47(3): 509-519. DOI: 10.13700/j.bh.1001-5965.2020.0444
作者姓名:陈智能  史存存  李轩涯  贾彩燕  黄磊
作者单位:1.中国科学院自动化研究所 数字内容技术与服务研究中心, 北京 100190
基金项目:国家自然科学基金;百度开放研究基金
摘    要:水下监控视频中的珊瑚礁鱼检测面临着视频成像质量不高、水下环境复杂、珊瑚礁鱼视觉多样性高等困难,是一个极具挑战的视觉目标检测问题,如何提取高辨识度的特征成为制约检测精度提升的关键。提出了一种时空特征聚合的水下珊瑚礁鱼检测方法,通过设计视觉特征聚合和时序特征聚合2个模块,融合多个维度的特征以实现这一目标。前者设计了自顶向下的切分和自底向上的归并方案,可实现不同分辨率多层卷积特征图的有效聚合;后者给出了一种帧差引导的相邻帧特征图融合方案,可通过融合多帧特征图强化运动目标及其周边区域的特征表示。公开数据集上的实验表明:基于以上2个模块设计的时空特征聚合网络可以实现对水下珊瑚礁鱼的有效检测,相比于多个主流方法和模型取得了更高的检测精度。 

关 键 词:珊瑚礁鱼   卷积神经网络   时空联合特征   目标检测   特征融合
收稿时间:2020-08-24

An underwater coral reef fish detection approach based on aggregation of spatio-temporal features
CHEN Zhineng,SHI Cuncun,LI Xuanya,JIA Caiyan,HUANG Lei. An underwater coral reef fish detection approach based on aggregation of spatio-temporal features[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 509-519. DOI: 10.13700/j.bh.1001-5965.2020.0444
Authors:CHEN Zhineng  SHI Cuncun  LI Xuanya  JIA Caiyan  HUANG Lei
Affiliation:1.Research Centre for Digital Content Technology and Services, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China2.School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China3.Baidu Inc., Beijing 100085, China4.College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
Abstract:It is challenging to detect coral reef fish from underwater surveillance videos, due to issues like poor video imaging quality, complex underwater environment, high visual diversity of coral reef fish, etc. Extracting discriminative features to characterize the fishes has become a crucial issue that dominates the detection accuracy. This paper proposes an underwater coral reef fish detection method based on aggregation of spatio-temporal features. It is achieved by designing two modules for visual and temporal feature aggregation and fusing multi-dimensional features. The former designs a top-down partition and a bottom-up merging, which achieve effective aggregation of feature maps of different convolutional layers with varying resolutions. The latter devises a temporal feature fusion scheme based on the pixel difference between adjacent frames. It enhances the feature representation of moving objects and their surrounding area through the fusion of feature maps coming from adjacent frames. Experiments on a public dataset show that, by employing the spatio-temporal aggregation network built on top of the two proposed modules, we can effectively detect coral reef fishes in the challenging underwater environment. Higher detection accuracy are obtained compared with the existing methods and popular detection models. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号