首页 | 本学科首页   官方微博 | 高级检索  
     

基于信息素启发狼群算法的UAV集群火力分配
引用本文:刘森琪,王鸿,于宁宇,郝礼楷. 基于信息素启发狼群算法的UAV集群火力分配[J]. 北京航空航天大学学报, 2021, 47(2): 297-305. DOI: 10.13700/j.bh.1001-5965.2020.0208
作者姓名:刘森琪  王鸿  于宁宇  郝礼楷
作者单位:中国人民解放军 66133部队, 北京 100041
摘    要:无人机(UAV)集群作战是未来智能化战争的重要作战样式。为充分发挥UAV集群整体作战优势,得到最优武器-目标分配(WTA)方案,使得UAV集群在火力分配中既能够满足任务要求,又能够较少作战单元消耗,建立了包含任务完成、有效杀伤、攻击消耗约束的UAV集群火力分配数学模型,采用带有游走、召唤算子的改进狼群算法(WPA)对模型进行求解。为提高算法全局寻优效率,避免陷入局部最优,引入蚁群优化(ACO)算法中信息素启发规则,对游走行为及狼群更新机制进一步改进,提出了基于信息素启发狼群算法(PHWPA)的UAV集群进攻的火力分配方法。仿真结果表明:所提方法是有效的,相比较于其他算法,PHWPA具有更高效的寻优能力,能够为UAV集群作战火力规划提供支持。 

关 键 词:无人机(UAV)   武器-目标分配(WTA)   狼群算法(WPA)   蚁群优化(ACO)算法   信息素启发规则
收稿时间:2020-05-24

Weapon-target assignment in UAV cluster based on pheromone heuristic wolf pack algorithm
LIU Senqi,WANG Hong,YU Ningyu,HAO Likai. Weapon-target assignment in UAV cluster based on pheromone heuristic wolf pack algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 297-305. DOI: 10.13700/j.bh.1001-5965.2020.0208
Authors:LIU Senqi  WANG Hong  YU Ningyu  HAO Likai
Affiliation:PLA Troop 66133, Beijing 100041, China
Abstract:Unmanned Aerial Vehicle (UAV) cluster operation is an important mode of intelligent warfare in the future. In order to give full play of the overall operational advantages of UAV cluster, a mathematical model is constructed to solve the Weapon-Target Assignment (WTA) problem in UAV cluster attacks and obtain the optimal scheme. The constraints of mission completion, effective killing and attack consumption are established in the model, which can meet the requirements of the mission, and also save the consumption of UAV combat units to maintain the power of UAV cluster. The improved Wolf Pack Algorithm (WPA) with scouting and summoning operators is used to solve the model. To obtain the higher global optimization efficiency and avoid trapping in local optimum, the weapon-target assignment in UAV cluster attack based on Pheromone Heuristic Wolf Pack Algorithm (PHWPA) is proposed to improve WPA's scouting behavior and renewable mechanism by using pheromone heuristic rules from Ant Colony Optimization (ACO). The simulation results show that the proposed method is effective. Compared with several algorithms, PHWPA has more efficient search ability. The proposed method can provide support for firepower planning of UAV cluster. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号