首页 | 本学科首页   官方微博 | 高级检索  
     

基于杂波量测集约束的改进MS-MeMBer滤波器
引用本文:陆小科,张志国,孙进平,孙伟. 基于杂波量测集约束的改进MS-MeMBer滤波器[J]. 北京航空航天大学学报, 2021, 47(9): 1748-1755. DOI: 10.13700/j.bh.1001-5965.2020.0317
作者姓名:陆小科  张志国  孙进平  孙伟
作者单位:1.南京电子技术研究所, 南京 210039
基金项目:国家自然科学基金61471019
摘    要:针对高杂波密度场景下,传统多传感器多目标多伯努利(MS-MeMBer)滤波器存在的量测划分假设质量下降、势估计结果出现偏差等问题,提出了一种基于杂波量测集约束的改进MS-MeMBer滤波器。首先,通过将杂波量测集的影响引入到更新过程中,优化了目标量测集的权重,并给出了杂波场景下的单目标多传感器似然函数。然后,通过两步贪婪划分机制,得到了改进的多传感器量测划分假设。通过仿真将所提方法与传统MS-MeMBer滤波器进行了比较,实验结果表明:在高杂波密度场景下,改进MS-MeMBer滤波器具有更优的多目标跟踪性能。 

关 键 词:多目标跟踪   多传感器多目标多伯努利(MS-MeMBer)滤波器   杂波量测集   量测划分假设   高杂波密度
收稿时间:2020-07-03

An improved multi-sensor MeMBer filter based on clutter measurement set constraint
LU Xiaoke,ZHANG Zhiguo,SUN Jinping,SUN Wei. An improved multi-sensor MeMBer filter based on clutter measurement set constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1748-1755. DOI: 10.13700/j.bh.1001-5965.2020.0317
Authors:LU Xiaoke  ZHANG Zhiguo  SUN Jinping  SUN Wei
Affiliation:1.Nanjing Research Institute of Electronics Technology, Nanjing 210039, China2.School of Electronic and Information Engineering, Beihang University, Beijing 100083, China
Abstract:To solve the problems existing in the traditional Multi-Sensor Multi-Target Multi-Bernoulli (MS-MeMBer) filter in the high clutter density scene, such as poor quality of measurement partitioning hypothesis and biases of cardinality estimation, an improved MS-MeMBer filter based on clutter measurement set constraint is proposed. By introducing the influence of the clutter measurement set into the update step, the weight of the target measurement set is optimized and the single target multi-sensor likelihood function in the clutter scene is given. After that, the improved multi-sensor measurement partitioning hypothesis is obtained by two-step greedy partition mechanism. The proposed method is compared with the traditional MS-MeMBer filter by simulation. The experimental results show that the proposed method has better multi-target tracking performance in high clutter density scene. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号