首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的高超声速滑翔目标跟踪方法
作者姓名:冯树林  郭杰  唐胜景
作者单位:北京理工大学宇航学院
摘    要:针对临近空间高超声速滑翔目标跟踪问题,提出一种基于反向传播神经网络修正改进迭代扩展卡尔曼滤波(Back Propagation Neural Network-aided Improved Iterative Extended Kalman Filter, BP-IIEKF)的目标轨迹跟踪方法。在雷达站坐标系下建立目标运动模型和量测模型。引入阻尼因子修正IEKF算法中的协方差预测矩阵,并定义算法的代价函数,给出迭代终止条件,保证了算法收敛精度,减小状态的观测更新误差,提高了目标状态估计精度。利用BP神经网络修正滤波结果,补偿系统滤波误差,进一步提高了跟踪精度。仿真结果表明所提算法对高超声速滑翔目标具有更高的跟踪精度。

关 键 词:高超声速滑翔目标  目标跟踪  迭代扩展卡尔曼滤波  神经网络
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号