首页 | 本学科首页   官方微博 | 高级检索  
     

基于多分类AdaBoost的航空发动机故障诊断
引用本文:曹惠玲,高升,薛鹏. 基于多分类AdaBoost的航空发动机故障诊断[J]. 北京航空航天大学学报, 2018, 44(9): 1818-1825. DOI: 10.13700/j.bh.1001-5965.2017.0774
作者姓名:曹惠玲  高升  薛鹏
作者单位:1.中国民航大学 航空工程学院, 天津 300300
基金项目:中央高校基本科研业务费专项资金(3122014D010)
摘    要:对航空发动机运行数据进行数据挖掘的方法,是发动机故障诊断研究领域的重要研究内容。由于各种算法自身的局限性,通过某种单一算法很难大幅度提升故障分类的准确性。运用组合分类的AdaBoost算法,综合多个分类模型进行诊断,是提升故障识别精度的一种较好的方法。通过AdaBoost算法及其改进算法的结合,建立一种多分类的AdaBoost算法,以支持向量机(SVM)为基础分类器,进行综合诊断模型的建立。通过单位向量法、比值系数法和相关系数法将指印图中统计的故障标识数据进行处理,得到不受故障程度影响的训练数据,再进行建模。实验表明,AdaBoost相关结合算法能够显著提升分类器性能。根据实际故障案例,验证了所建立的诊断模型能够较好地用于发动机的故障诊断。 

关 键 词:AdaBoost   支持向量机(SVM)   单位向量法   比值系数法   相关系数法   故障诊断
收稿时间:2017-12-13

Aeroengine fault diagnosis based on multi-classification AdaBoost
CAO Huiling,GAO Sheng,XUE Peng. Aeroengine fault diagnosis based on multi-classification AdaBoost[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1818-1825. DOI: 10.13700/j.bh.1001-5965.2017.0774
Authors:CAO Huiling  GAO Sheng  XUE Peng
Affiliation:1.College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China2.Engineering Training Center, Civil Aviation University of China, Tianjin 300300, China
Abstract:The data mining of aeroengine operational data is an important research for engine fault diagnosis. Due to the limitations of various algorithms, the accuracy of fault classification is difficult to be greatly enhanced with a single algorithm. Using a combination of classifications and diagnosis of multiple classification models, AdaBoost algorithm is a good method to improve the fault recognition accuracy. This paper combined the AdaBoost algorithm and its improved algorithm, and established a multi-classification AdaBoost algorithm. Support vector machine (SVM) was taken as the basic classifier, and a comprehensive diagnostic model was established. Fault identification data in statistics of fingerprint maps were processed with unit vector, ratio coefficient and correlation coefficient, and the training data for fault diagnosis with few effects of fault degrees were obtained. Then the model was constructed. The experimental results illustrate that the AdaBoost based combination algorithm can significantly improve the performance of classifier. With the actual fault cases, it is verified that the established diagnostic model can be well applied to engine fault diagnosis.
Keywords:AdaBoost  support vector machine (SVM)  unit vector  ratio coefficient  correlation coefficient  fault diagnosis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号