首页 | 本学科首页   官方微博 | 高级检索  
     

非线性系统的动态神经网络自适应辨识
引用本文:黄金泉,孙健国. 非线性系统的动态神经网络自适应辨识[J]. 南京航空航天大学学报, 1999, 31(3): 275-279
作者姓名:黄金泉  孙健国
作者单位:南京航空航天大学动力工程系,南京,210016
基金项目:国家留学基金回国科研资助
摘    要:提出了用双层动态神经网络在线辨识非线性动态系统的方法。神经网络的权重在线学习,不需要离线训练。在无逼近误差和扰动的理想情况下,所提出的在线算法能保证辨识误差趋于零,基函数持续激励条件能保证权重趋于零。在非理想情况下,权重调整律采用e修正权重算法,它是BP算法的推广,不需要基函数的持续激励条件。基于李雅普诺夫稳定性理论保证了自适应辨识系统的稳定性。仿真算例说明了所提出的动态神经网络自适应辨识的有效性

关 键 词:系统辨识  神经网络  非线性系统

Adaptive Identification Using Recurrent Neural Network for Non-linear Systems
Huang Jinquan,Sun Jianguo. Adaptive Identification Using Recurrent Neural Network for Non-linear Systems[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1999, 31(3): 275-279
Authors:Huang Jinquan  Sun Jianguo
Abstract:An adaptive identification method is proposed for non linear dynamical systems using two layer recurrent neural networks. On line weight tuning algorithm with e modification is designed without the need of off line training phase. Stability analysis of the adaptive identification systems is presented. The proposed algorithm guarantees that the identification error and the neural weight estimation error are uniformly ultimately bounded for systems with disturb and neural network approximation error. A simulation example illustrates the effeciency of the proposed dynamical identification method.
Keywords:system identification  neural networks  non linear systems
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号