首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP人工神经网络的离心压气机叶轮多目标优化设计方法
引用本文:罗明,左志涛,李弘扬,李文,陈海生. 基于BP人工神经网络的离心压气机叶轮多目标优化设计方法[J]. 航空动力学报, 2016, 31(10): 2424-2431. DOI: 10.13224/j.cnki.jasp.2016.10.015
作者姓名:罗明  左志涛  李弘扬  李文  陈海生
作者单位:1. 中国科学院 工程热物理研究所, 北京 100190;
基金项目:国家高技术研究发展计划(2013AA050801);科技部国际合作项目(2014DFA60600)
摘    要:利用Concept NREC软件建立离心压气机叶轮设计样本库,借助BP(back propagation)人工神经网络建立样本库中各设计参数与压气机性能之间的关系,接下来以多目标遗传算法寻找Pareto解,从而获得离心压气机叶轮最佳设计参数.将该方法应用于Krain叶轮设计工况,所得叶轮的效率、压比较Krain叶轮原型分别提高1.4%和10.9%.通过对人工神经网络模型可靠性的讨论、多目标优化模型的主成分分析和所设计叶轮性能的CFD验证,证明了所构建的目标函数与所获得的Pareto解集的合理性,说明本方法可以有效应用于在离心压气机设计、选型. 

关 键 词:离心压气机叶轮设计   多目标优化   遗传算法   人工神经网络   主成分分析
收稿时间:2015-01-15

Multi-objective optimization design of centrifugal compressor impeller based on BP artificial neural network
LUO Ming,ZUO Zhi-tao,LI Hong-yang,LI Wen and CHEN Hai-sheng. Multi-objective optimization design of centrifugal compressor impeller based on BP artificial neural network[J]. Journal of Aerospace Power, 2016, 31(10): 2424-2431. DOI: 10.13224/j.cnki.jasp.2016.10.015
Authors:LUO Ming  ZUO Zhi-tao  LI Hong-yang  LI Wen  CHEN Hai-sheng
Affiliation:1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;2. University of the Chinese Academy of Sciences, Beijing 100190, China
Abstract:The database of the centrifugal compressor impeller performance was given by Concept NREC software. The relationship of the impeller''s main design parameters and performance was established by BP (back propagation) artificial neural network. Then the optimal array of main design parameters was acquired by the multi-objective genetic algorithm. This design method was used to satisfy Krain impeller''s performance objective; the optimized impeller''s efficiency and pressure ratio increased by 1.4% and 10.9%, respectively. Through discussion of artificial neural network model''s reliability, multi-objective optimization model''s principal component analysis and the impellers'' CFD numerical simulation verification, the validity of objective functions and Pareto optimal solutions was proved, the effectiveness of the present centrifugal compressor design method was well confirmed.
Keywords:centrifugal compressor impeller design  multi-objective optimization  genetic algorithm  artificial neural network  principal component analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号