首页 | 本学科首页   官方微博 | 高级检索  
     


Optomechanical optimal design configuration and analysis of glue pad bonds in lens mounting for space application
Affiliation:Space Mechanical Research Department, Satellites Development Centre, Algerian Space Agency, BP 4065, Ibn Rochd, USTO, Oran, POS 50 ILOT T12 Bir El Djir, Oran 31130, Algeria
Abstract:Optomechanical systems are very complex requiring a high degree of accuracy. The carrier structure of an optical system is required to maintain the position of the optical components with respect to each other within the design tolerances. The most common loads on optical systems are self-weight, due to gravity orientations, and temperature ranges, due to exposure to rapidly changing temperatures from very cold to very hot and during launch. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations.In order to ensure reliability during a space flight mission, the optomechanical engineer must understand the requirements of the space flight environment as well as the physics of failure of the optical components themselves; this can minimize the risks of on-orbit failure.This paper focuses on the optomechanical optimal design lens mounting using glue pads bonding. The main idea of this research study is to obtain an optimal choice of the position of the glue to fix the lenses on the barrel in such a way that we obtain a configuration of the optical assembly performance with less stress.In this paper, an investigation was performed using several methods including (thermo-elastic analysis, the margin of safety and lens distortion analysis). The results show that the position with six contacts glue pads is the best configuration compared to other configurations. This solution can be very helpful for decision-makers and optical engineers during the development phases of space optomechanical systems.
Keywords:Optomechanical design  Lens mounting  Glue pads  Thermoelastic analysis  MOS  Lens distortion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号