首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大型客机机翼挂架接合位置定常吹气控制分析
引用本文:刘睿,白俊强,邱亚松,李宇飞.大型客机机翼挂架接合位置定常吹气控制分析[J].北京航空航天大学学报,2022,48(1):132-146.
作者姓名:刘睿  白俊强  邱亚松  李宇飞
作者单位:西北工业大学 航空学院, 西安 710072
摘    要:对于采用下单翼布局翼吊发动机形式的大型客机而言,为了保证发动机与地面的安全距离,挂架高度较短,造成前缘缝翼被打断,大迎角下发动机短舱尾迹对其后方机翼上翼面的流动产生不利影响。采用数值模拟方法系统研究了在发动机挂架后方机翼上表面采用主动流动控制技术来提高着陆构型的气动性能。采用机翼+短舱构型研究了吹气参数对吹气效果的影响。结果表明:大迎角下,吹气可以抑制短舱后方机翼上表面的分离流动,使最大升力系数明显提高;吹气缝宽度、吹气质量流率由于会影响吹气总压的变化,对吹气效果的影响显著,对升力系数的影响量在0.05以上;吹气缝与上翼面夹角会影响能量注入的区域,对吹气效果有较大影响;吹气缝位置会影响吹气控制的范围,对吹气效果也有一定影响。分别对无短舱涡流片和有短舱涡流片的全机构型进行了校核研究。采用吹气措施之后,无短舱涡流片构型线性段升力系数增大约0.15,最大升力系数增大0.186,失速迎角增大1°;有短舱涡流片构型线性段升力系数增大约0.13,最大升力系数增大0.16。 

关 键 词:流动控制    流动分离    升力系数    缝翼    着陆构型    超大涵道比
收稿时间:2020-09-15

Steady blowing control at wing-engine junction of airliner
LIU Rui,BAI Junqiang,QIU Yasong,LI Yufei.Steady blowing control at wing-engine junction of airliner[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(1):132-146.
Authors:LIU Rui  BAI Junqiang  QIU Yasong  LI Yufei
Institution:College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:For airliner with a wing-mounted engine layout, in order to ensure ground clearance, the pylon has to be short, which leads to a slat cutout, and the nacelle wake of the engine generates low energy flow and even flow separation on the upper wing surface. Numerical simulation method has been used to systematically study active flow control technology at wing-engine junction of airliner to improve the aerodynamic performance of the landing configuration. The influence of the blowing parameters on blowing performance was studied using the wing-nacelle configuration. The results show that, at high angles of attack, blowing can suppress the separation of the upper surface of the wing behind the nacelle, and the maximum lift coefficient can be significantly improved. Since the width of the blowing slot and the blowing mass flow rate influence the total pressure of blowing air, they show great effects on the blowing performance with the improvement of the lift coefficient of more than 0.05. The angle between the blowing slot and the upper wing surface affects the area of blowing energy, making a considerable effect on the blowing performance. The position of blowing slot affects the control range of the blowing air, which also has some effects on the blowing performance. Finally, the full-body configuration with and without nacelle vortex fins were studied respectively. For the configuration without nacelle vortex fin, the lift coefficient of the linear segment increases by about 0.15, the maximum lift coefficient increases by 0.186, and stall angle of attack increases by 1°. For the configuration with nacelle vortex fin, the lift coefficient of the linear segment increases by about 0.13, and the maximum lift coefficient increases by 0.16. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号