首页 | 本学科首页   官方微博 | 高级检索  
     

基于IRCMNDE和NNCHC的滚动轴承故障诊断
引用本文:杨潇谊,邓为权,马军. 基于IRCMNDE和NNCHC的滚动轴承故障诊断[J]. 航空动力学报, 2022, 37(6): 1150-1161. DOI: 10.13224/j.cnki.jasp.20200543
作者姓名:杨潇谊  邓为权  马军
作者单位:昆明理工大学云南省人工智能重点实验室,昆明650500;昆明理工大学信息工程与自动化学院,昆明650500;昆明理工大学民航与航空学院,昆明650500
基金项目:国家自然科学基金(51765022,61663017); 云南省科技计划项目(2019FD042)
摘    要:针对多尺度散布熵(MDE)在粗粒化过程中易发生信息丢失、产生虚假信息,难以全面提取轴承故障信息的问题,提出了基于改进的精细复合多尺度归一化散布熵(IRCMNDE)和最近邻凸包分类(NNCHC)的滚动轴承故障诊断方法。引入精细复合多尺度散布熵(RCMDE),将其粗粒化过程中平均值替换为最大值来表示数据段信息,以克服传统粗粒化过程的不足并突出故障特征。通过归一化操作减弱熵值计算时不同参数选择导致的熵值波动幅度,得到IRCMNDE。将IRCMNDE作为故障特征,使用NNCHC分类器对故障特征进行分类。经实验验证,该方法可达到98.98%的故障识别准确率,相比基于MDE(故障识别准确率为95.99%)和RCMDE(故障识别准确率为97.60%)的方法,能够更准确地提取滚动轴承的故障特征信息,提高承故障分类的准确性。 

关 键 词:滚动轴承  故障诊断  多尺度散布熵  精细复合多尺度散布熵  最近邻凸包分类(NNCHC)
收稿时间:2020-12-20

Fault diagnosis of rolling bearings based on IRCMNDE and NNCHC
YANG Xiaoyi,DENG Weiquan,MA Jun. Fault diagnosis of rolling bearings based on IRCMNDE and NNCHC[J]. Journal of Aerospace Power, 2022, 37(6): 1150-1161. DOI: 10.13224/j.cnki.jasp.20200543
Authors:YANG Xiaoyi  DENG Weiquan  MA Jun
Affiliation:1.Key Laboratory of Artificial Intelligence of Yunnan Province, Kunming University of Science and Technology,Kunming 650500,China2.Faculty of Information Engineering and Automation, Kunming University of Science and Technology,Kunming 650500,China3.Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology,Kunming 650500,China
Abstract:In view of the problem that information loss and false information may occur during the coarse-graining process of multi-scale dispersion entropy (MDE),which make it difficult to extract bearing fault information comprehensively,a rolling bearing fault diagnosis method based on improved refined composite multi-scale normalized dispersion entropy (IRCMNDE) and nearest neighbor convex hull classification (NNCHC) was proposed.The refined composite multi-scale dispersion entropy (RCMDE) was introduced,and the average value in the coarse-graining process was replaced by the maximum value to represent the data segments information,which can overcome the shortcomings of the traditional coarse-graining process and highlight the fault characteristics.Through the normalization operation to reduce the influence of the selection of different parameters on the entropy value,IRCMNDE was acquired as feature samples; NNCHC was used to classify the feature samples to realize bearing fault diagnosis.Experimental results showed that the proposed method can achieve 98.98% fault identification accuracy.Compared with the methods based on MDE (fault identification accuracy was 95.99%) and RCMDE (fault identification accuracy was 97.60%),the proposed method can extract the fault feature information of rolling bearings more accurately and improve the accuracy of fault classification. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号