首页 | 本学科首页   官方微博 | 高级检索  
     

无人机类脑吸引子神经网络导航技术
引用本文:刘建业,杨闯,熊智,赖际舟,熊骏. 无人机类脑吸引子神经网络导航技术[J]. 导航定位与授时, 2019, 6(5): 52-60
作者姓名:刘建业  杨闯  熊智  赖际舟  熊骏
作者单位:南京航空航天大学导航研究中心,南京211106;先进飞行器导航、控制与健康管理工业和信息化部重点实验室,南京211106;卫星通信与导航江苏高校协同创新中心,南京210016;南京航空航天大学导航研究中心,南京,211106
基金项目:国家自然科学基金项目(61873125, 61673208, 61703208, 61533008, 61533009);江苏省自然基金项目(BK20181291);中央高校基本科研业务费专项资金(NP2018108);江苏省六大人才高峰项目(2015-XXRJ-005)
摘    要:当前无人机在非结构化或未知环境下飞行主要采用SLAM进行导航与定位,存在如下突出问题:依赖高精度昂贵激光雷达等环境感知传感器;需要建立准确世界和无人机物理模型;受环境影响较大;自主智能水平较低,无法较好地满足无人机对导航系统的要求,需要发展自主智能的导航方式。基于吸引子神经网络的类脑导航技术,无需训练模型参数,不依赖高精度传感器,无需精确建模,且复杂环境下鲁棒性较强,具有解决上述问题的潜力。简要阐述了动物大脑导航机理,分析了吸引子神经网络和基于吸引子神经网络的类脑导航关键技术,最后讨论了吸引子类脑导航技术在无人机应用中的挑战。

关 键 词:类脑导航  吸引子神经网络  位置细胞  网格细胞  无人机

Attractor Neural Network-based Brain-inspired Navigation Technology for UAV
LIU Jian-ye,YANG Chuang,XIONG Zhi,LAI Ji-zhou and XIONG Jun. Attractor Neural Network-based Brain-inspired Navigation Technology for UAV[J]. Navigation Positioning & Timing, 2019, 6(5): 52-60
Authors:LIU Jian-ye  YANG Chuang  XIONG Zhi  LAI Ji-zhou  XIONG Jun
Affiliation:Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;Key Laboratory of Navigation, Guidance and Health-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing 211106, China;Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 210016, China,Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China,Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;Key Laboratory of Navigation, Guidance and Health-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing 211106, China;Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 210016, China,Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;Key Laboratory of Navigation, Guidance and Health-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing 211106, China;Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 210016, China and Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract:Currently, UAV mainly uses SLAM to navigate and locate itself in unstructured or unknown environment with the following problems: depending on high-precision and expensive sensors such as lidar; using probability method to build accurate physical model of the world and UAV; being greatly affected by environment; poor autonomy and intelligence, which make the SLAM method impractical in UAV. Thus it is urgent to develop a new type of navigation method for UAV. Brain-inspired navigation technology based on attractor neural network (ANN) neither needs training model parameters or accurate modeling, nor relies on high-precision sensors, but has strong robustness in complex environment, which make the technology a good candidate for solving the above problems. This paper briefly describes the mechanism of animal brain navigation, analyses the performance of ANN and ANN-based brain- inspired navigation technology, and finally discusses the challenges of ANN-based brain-inspired navigation technology in the application of UAV.
Keywords:Brain-inspired navigation   Attractor neural network   Place cell   Grid cell   UAV
本文献已被 万方数据 等数据库收录!
点击此处可从《导航定位与授时》浏览原始摘要信息
点击此处可从《导航定位与授时》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号