首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波域贝叶斯估计模糊萎缩的SAR图像降斑算法
引用本文:吴艳,王霞,廖桂生. 基于小波域贝叶斯估计模糊萎缩的SAR图像降斑算法[J]. 中国航空学报, 2006, 19(4): 326-333. DOI: 10.1016/S1000-9361(11)60336-1
作者姓名:吴艳  王霞  廖桂生
作者单位:[1]National Key Lab. of Radar Signal Processing, Xidian University, Xi'an 710071, China [2]School of Electronics Engineering, Xidian University, Xi ' an 710071, China
基金项目:Foundation items: A Postdoctoral Science Foundation of China (J63104020156); National Defence Foundation of China
摘    要:提出了基于小波域高斯混合模型贝叶斯估计模糊萎缩的SAR图像降斑算法.该算法分析了SAR图像在平稳小波变换(SWT)域中的统计模型,并用高斯混合模型对其进行描述,推导出基于贝叶斯估计的信号最小均方误差(MMSE)的模糊萎缩因子.籍此再根据小波域相邻尺度间小波系数的相关性,采用分区域模糊萎缩思想,很好地得到无斑点真实信号小波系数的估计值.仿真结果表明该算法在大大抑制斑点噪声的同时,有效地保持了边缘,其性能优于改进Lee滤波、小波软阈值和SWT萎缩降斑算法.

关 键 词:SAR图像降斑  模糊萎缩因子  最小均方差  区域划分  贝叶斯估计  平稳小波变换
文章编号:1000-9361(2006)04-0326-08
收稿时间:2005-04-29
修稿时间:2006-06-19

SAR Images Despeckling Based on Bayesian Estimation and Fuzzy Shrinkage in Wavelet Domains
WU Yan,WANG Xia,LIAO Gui-sheng. SAR Images Despeckling Based on Bayesian Estimation and Fuzzy Shrinkage in Wavelet Domains[J]. Chinese Journal of Aeronautics, 2006, 19(4): 326-333. DOI: 10.1016/S1000-9361(11)60336-1
Authors:WU Yan  WANG Xia  LIAO Gui-sheng
Affiliation:National Key Lab.of Radar Signal Processing, Xidian University, Xi'an 710071, China;School of Electronics Engineering, Xidian University, Xi'an 710071, China;School of Electronics Engineering, Xidian University, Xi'an 710071, China;National Key Lab.of Radar Signal Processing, Xidian University, Xi'an 710071, China
Abstract:An efficient despeckling algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its per- formance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage are adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter,wavelet soft thresholding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation.
Keywords:SAR image despeclding   fuzzy shrinkage factor   MMSE   region division. Bayesian estimation   SWT
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号