首页 | 本学科首页   官方微博 | 高级检索  
     

基于朴素贝叶斯分类器的空中红外目标抗干扰识别方法研究
引用本文:杨 开,李少毅,张 凯,钮赛赛. 基于朴素贝叶斯分类器的空中红外目标抗干扰识别方法研究[J]. 飞控与探测, 2019, 0(4): 62-70
作者姓名:杨 开  李少毅  张 凯  钮赛赛
作者单位:西北工业大学 航天学院,西北工业大学 航天学院,西北工业大学 航天学院,上海航天控制技术研究所
基金项目:国家自然科学基金(61703337);上海航天科技创新基金(SAST2017-082)
摘    要:红外诱饵对抗技术的发展使得空战环境日益复杂化,对红外成像制导空空导弹抗干扰目标识别技术提出了更高的要求。红外诱饵的投放使得目标特征的完整性、显著性及稳定性遭到破坏,基于特征融合匹配的统计模式识别方法无法准确识别目标。提出了一种基于朴素贝叶斯分类器的抗干扰目标识别方法,该方法对空战对抗仿真图像数据集进行了特征挖掘,利用实验拟合方法构建了典型特征的概率密度函数模型,构造了朴素贝叶斯分类器,实现了飞机目标和干扰的分类识别。仿真实验结果表明,该方法在已测试的弹道图像数据集下的平均识别正确率达到了81.82%,且能够解决假目标、目标遮挡等抗干扰目标的识别难题。

关 键 词:朴素贝叶斯分类器;目标识别;特征提取;概率分布

Research on Anti-jamming Recognition Method of Aerial Infrared Target Based on Naive Bayes Classifier
YANG Kai,LI Shaoyi,ZHANG Kai and NIU Saisai. Research on Anti-jamming Recognition Method of Aerial Infrared Target Based on Naive Bayes Classifier[J]. FLIGHT CONTROL & DETECTION, 2019, 0(4): 62-70
Authors:YANG Kai  LI Shaoyi  ZHANG Kai  NIU Saisai
Affiliation:School of Astronautics, Northwestern Polytechnical University,School of Astronautics, Northwestern Polytechnical University,School of Astronautics, Northwestern Polytechnical University and Shanghai Aerospace Control Technology Institute
Abstract:The development of infrared decoy confrontation technology has made the air combat environment increasingly complicated, and put forward higher requirements for the anti-jamming target recognition technology of infrared imaging guide air-to-air missiles. The infrared decoy is placed to destroy the integrity, significance and stability of the target features. The statistical pattern recognition method based on feature fusion matching cannot accurately identify the target. For performance requirements, this paper proposes a method for applying Naive Bayes Classifier to anti-interference target recognition. The method based on the feature mining simulated combat against the image dataset, wherein the method is typically constructed probabilistic experiment fitting distribution function models, Naive Bayes Classifier configured to classify the target aircraft identification and interference. The simulation results show that the average recognition accuracy of the proposed method is 81.82% under the tested ballistic image dataset, and it can adapt to a large number of decoy and target occlusion.
Keywords:Naive Bayes Classifier   target recognition   feature extraction   probability distributions
点击此处可从《飞控与探测》浏览原始摘要信息
点击此处可从《飞控与探测》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号