摘 要: | 作为智能交通系统的核心技术,稳健的交通流量预测是一个长期存在但具有挑战的任务。不论是工业界还是学术界,现有模型需要大量训练数据、易受数据噪声影响而表现不稳健,是限制该领域发展与实际应用落地的重要因素。而在学术界,图对比学习可以通过数据增强与对比损失来降低数据需求量,同时提升模型抵抗数据噪声的能力。提出一种交通流量图对比学习(TFGCL)框架,用于稳健的交通流量预测。TFGCL框架有3个创新点:针对交通流量图(TFG)数据的独特时空特性,TFGCL框架从时间和空间2个角度出发,提出3种TFG数据增强方法。针对TFG数据中语义相似的假负样本,提出一个过滤策略使TFGCL框架能够免受其干扰,从而学习到高质量的表征。TFGCL框架通过联合交通流量预测任务和图对比学习任务进行同时训练。在3个真实交通数据集上与8个基线模型进行对比实验,结果表明:TFGCL框架的预测性能更为稳健,较最优基线模型最高提升6.24%,TFGCL框架的稳健性尤其体现在数据缺失较为明显的数据集和长时交通流量预测任务中。
|