首页 | 本学科首页   官方微博 | 高级检索  
     检索      

2-SGCMGs与磁力矩器的对地姿态混合控制方法
引用本文:雷拥军,袁利,刘其睿,刘洁.2-SGCMGs与磁力矩器的对地姿态混合控制方法[J].中国空间科学技术,2021,41(1):75-83.
作者姓名:雷拥军  袁利  刘其睿  刘洁
作者单位:1.北京控制工程研究所,北京100094 2.空间智能控制技术重点实验室,北京100094
摘    要:针对故障后仅剩两单框架控制力矩陀螺(SGCMG)可工作的对地定向三轴稳定卫星姿态控制问题进行了研究,提出了2-SGCMGs系统与磁力矩组合的混合控制策略及方法,以克服两SGCMG欠驱动控制的鲁棒性问题.首先,给出2-SGCMGs零动量方式的标称框架角构型选择计算过程.然后,结合标称框架角构型,构造了一种不同于沿传统体轴...

关 键 词:卫星  姿态控制  混合控制  控制力矩陀螺  磁力矩器  磁卸载

An attitude hybrid control method for earth-orienting satellite systems with 2-SGCMGs and magnet torquers
LEI Yongjun,Yuan Li,LIU Qirui,LIU Jie.An attitude hybrid control method for earth-orienting satellite systems with 2-SGCMGs and magnet torquers[J].Chinese Space Science and Technology,2021,41(1):75-83.
Authors:LEI Yongjun  Yuan Li  LIU Qirui  LIU Jie
Institution:1.Beijing Institute of Control Engineering, Beijing 100094, China 2.Science and Technology on Space Intelligent Control Laboratory, Beijing 100094, China
Abstract:The attitude control problems were investigated for the earth-oriented three-axis stabilized satellite with a SGCMGs system that only two control moment gyros can be utilized for the others’ failures, and a hybrid control method combining 2 SGCMGs with magnet torquers was proposed to overcome the robustness deficiency of the 2-SGCMGs underactuated system. The nominal gimbal angles for the zero-momentum system were derived with the geometric method. On the basis of the nominal SGCMG gimbal configuration, a novel control frame was established to divide the 3dofs torque command space into two orthogonal subspaces, in which the control commands can be implemented with 2 SGCMGs and magnet torquers individually, and the decoupled control was in turn accomplished for the two different type actuators with significance of difference. Moreover, implementation algorithms of CMG gimbal rate commands and magnet torquer dipole moment commands were also presented. Finally, the effectiveness and robustness of the proposed method were demonstrated by the numerical simulation for the satellite dynamics in the presence of space environmental disturbance torques, and high accuracy performances were achieved with the attitude error less than 0.05° and the attitude stability higher than 0.0005°/s, which can satisfy the general application requirements of high resolution earth remote-sensing satellites.
Keywords:satellite  attitude control  hybrid control  control moment gyro  magnet torquer  magnetic momentum   dumping  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国空间科学技术》浏览原始摘要信息
点击此处可从《中国空间科学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号