首页 | 本学科首页   官方微博 | 高级检索  
     

重力测量卫星KBR系统相位中心在轨标定算法
引用本文:辛宁,邱乐德,张立华,丁延卫. 重力测量卫星KBR系统相位中心在轨标定算法[J]. 航天器工程, 2014, 0(2): 24-30
作者姓名:辛宁  邱乐德  张立华  丁延卫
作者单位:航天东方红卫星有限公司;中国空间技术研究院;
基金项目:国家自然科学基金项目(41274041)
摘    要:针对低低跟踪(SST-LL)重力测量卫星K频段测距(KBR)系统相位中心在轨标定问题,提出了一种应用预测卡尔曼滤波算法的KBR系统在轨标定算法。首先,以磁力矩器和姿态控制喷气发动机为执行部件,对一颗卫星施加一定的组合力矩,使其绕另一颗卫星进行周期性姿态机动;然后,将星敏感器数据代入预测卡尔曼滤波算法中估计出卫星姿态;最后,根据KBR系统观测值与卫星姿态角之间的关系,利用扩展卡尔曼滤波算法估计出KBR系统相位中心的位置。数值仿真结果表明:KBR系统相位中心可以被实时估计,当存在较大的卫星姿态动力学模型误差时,KBR系统相位中心的标定误差仍在0.3mrad以内,证明此算法估计精度较高且鲁棒性强。

关 键 词:低低跟踪重力测量卫星  K频段测距系统  相位中心  在轨标定  预测卡尔曼滤波算法

Algorithm for KBR System Phase Center In-orbit Calibration of Gravity Measurement Satellite
Affiliation:XIN Ning QIU Lede ZHANG Lihua DING Yanwei (1 DFH Satellite Co. Ltd. , Beijing 100094, China) (2 China Academy of Space Technology, Beijing 100094, China)
Abstract:An algorithm for in-orbit calibration of KBR (K-band ranging) system of the SST-LL (low-low satellite-to-satellite tracking) gravity measurement satellite based on PEKF (predictive Kalman filter) algorithm is proposed. The proposed algorithm is embodied in three steps. Firstly, the magnetic torque and thruster torque are applied to force the satellite to follow the designed atti- tude track. Secondly, the observation of star sensor is used to estimate attitude based on PEKF. Thirdly, EKF (extended Kalman filter) algorithm is used to estimate the KBR system phase cen- ter by using of the relationship between the observation of KBR system and satellite attitude mo- tion angle. The numerical results indicate that phase center can be real-time estimated and the calibration error of KBR system phase center is less than 0.3mrad even when the uncertainty of satellite attitude dynamics model is big, which demonstrates the effectiveness and robust of the proposed algorithm.
Keywords:SST-LL gravity measurement satellite~ K-band ranging system~ phase center~in orbit calibration~ predictive Kalman filter algorithm
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号