首页 | 本学科首页   官方微博 | 高级检索  
     

基于多模态感知与融合的无人车韧性导航系统
引用本文:仲训昱,武东杰,陈登龙,庄明溪,吴汶鸿,彭侠夫. 基于多模态感知与融合的无人车韧性导航系统[J]. 导航定位与授时, 2021, 8(6): 1-12. DOI: 10.19306/j.cnki.2095-8110.2021.06.001
作者姓名:仲训昱  武东杰  陈登龙  庄明溪  吴汶鸿  彭侠夫
作者单位:厦门大学航空航天学院,厦门361005
基金项目:装备预先研究基金(61405180205)
摘    要:针对野外复杂环境下的无人车自主导航需要,建立了一种基于多源融合定位、语义建图与运动规划的智能导航系统.首先,针对IMU、轮式里程计、视觉SLAM与激光雷达SLAM等测量子系统,设计了误差状态扩展卡尔曼滤波器进行融合定位.其次,基于改进的CNN语义分割网络生成环境的语义图像,与3D激光雷达点云融合,并使用最大概率更新算法构建语义3D地图.接着,在语义和几何信息投影获得可通行性代价的基础上,提出了一种语义动态窗口的局部路径规划方法.最后,将以上感知、定位与规划方法整合成完整的智能导航系统,在城市与野外典型场景的测试中,相对定位误差小于0.4%D,具备一定的韧性导航定位和智能感知规划能力.

关 键 词:多模态感知  语义3D地图  融合定位  运动规划  误差状态扩展卡尔曼滤波  地面无人车

Flexible Navigation System for Unmanned Ground Vehicle Based on Multi-modal Sensing and Fusion
ZHONG Xun-yu,WU Dong-jie,CHEN Deng-long,ZHUANG Ming-xi,WU Wen-hong,PENG Xia-fu. Flexible Navigation System for Unmanned Ground Vehicle Based on Multi-modal Sensing and Fusion[J]. Navigation Positioning & Timing, 2021, 8(6): 1-12. DOI: 10.19306/j.cnki.2095-8110.2021.06.001
Authors:ZHONG Xun-yu  WU Dong-jie  CHEN Deng-long  ZHUANG Ming-xi  WU Wen-hong  PENG Xia-fu
Affiliation:School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
Abstract:An intelligent navigation system based on multi-source fusion positioning, semantic mapping and motion planning is established to meet the needs of autonomous navigation of unmanned ground vehicles in complex field environments. Firstly, the measurement subsystems, such as IMU, wheeled odometer, visual SLAM and lidar SLAM, are fused for localization by error state extended Kalman filter. Secondly, the semantic image of the environment is generated based on the improved CNN semantic segmentation network, which is fused with the 3D lidar point cloud, and the semantic 3D map is constructed using the maximum probability update algorithm. Then, based on the passage cost computed by the projection of semantic and geometric information, a local path planning method based on semantic dynamic window is proposed. Finally, the above sensing, positioning and planning methods are integrated into a complete intelligent navigation system. In the tests of typical urban and wild scenes, the relative positioning error is less than 0.4%D, and it has a certain ability of tough navigation positioning and intelligent perception planning.
Keywords:Multi-modal sensing   Semantic 3D map   Fusion localization   Motion planning   Error State Expanded Kalman Filtering   Unmanned ground vehicle
本文献已被 万方数据 等数据库收录!
点击此处可从《导航定位与授时》浏览原始摘要信息
点击此处可从《导航定位与授时》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号