首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Global structure,seasonal and interannual variability of the eastward propagating tides seen in the SABER/TIMED temperatures (2002–2007)
Authors:D Pancheva  P MukhtarovB Andonov
Institution:Geophysical Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 3, 1113 Sofia, Bulgaria
Abstract:The present paper is focused on the global spatial (altitude and latitude) structure, seasonal and interannual variability of the most stable in amplitude and phase eastward propagating diurnal and semidiurnal tides with zonal wavenumbers 2 and 3 derived from the SABER/TIMED temperatures for full 6 years (January 2002–December 2007). The tidal results are obtained by an analysis method where the tides (migrating and nonmigrating) and the planetary waves (zonally travelling, zonally symmetric and stationary) are simultaneously extracted from the satellite data. It has been found that the structures of the eastward propagating diurnal tides with zonal wavenumbers 3 and 2 change from antisymmetric with respect to the equator below ∼85 km height, to more symmetric above ∼95 km. The seasonal behavior of the DE3 is dominated by annual variation with maximum in August–September reaching average (2002–2007) amplitude of ∼15 K, while that of the DE2 by semiannual variation with solstice maxima and with average amplitude of ∼8 K. These tides revealed some interannual variability with a period of quasi-2 years. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 2 in the southern hemisphere (SH) is dominated by annual variation with maximum in the austral summer (November–January) while that in the northern hemisphere (NH) by semiannual variation with equinoctial maxima. The SE2 maximizes near 115 km height and at latitude of ∼30° reaching an average amplitude of ∼6 K. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 3 in both hemispheres indicates a main maximum during June solstice and a secondary one during December solstice. The tide maximizes near 110–115 km height and at a latitude of ∼30° reaching an average amplitude of ∼4.8 K in the SH and ∼4 K in the NH. The tidal structures of the two eastward propagating semidiurnal tides are predominantly antisymmetric about the equator.
Keywords:Eastward propagating tides  Symmetric and antisymmetric tidal modes  MLT dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号