首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Micro-meteoroids and space debris impact risk assessment for the ConeXpress satellite using ESABASE2/Debris
Authors:W Kuiper  G Drolshagen  R Noomen
Institution:1. RWE Energy Nederland N.V. Diamantlaan 15, 2132 WV Hoofddorp, The Netherlands;2. Space Environments and Effects Section, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands;3. Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
Abstract:Micro-meteoroid and space debris impact risk assessments are performed to investigate the risk from hypervelocity impacts to sensitive spacecraft sub-systems. For these analyses, ESA’s impact risk assessment tool ESABASE2/Debris is used. This software tool combines micro-particle environment models, damage equations for different shielding designs and satellite geometry models to perform a detailed 3D micro-particle impact risk assessment. This paper concentrates on the impact risk for exposed pressurized tanks. Pressure vessels are especially susceptible to hypervelocity impacts when no protection is available from the satellite itself. Even small particles in the mm size range can lead to a fatal burst or rupture of a tank when impacting with a typical collision velocity of 10–20 km/s. For any space mission it has to be assured that the impact risk is properly considered and kept within acceptable limits. The ConeXpress satellite mission is analysed as example. ConeXpress is a planned service spacecraft, intended to extend the lifetime of telecommunication spacecraft in the geostationary orbit. The unprotected tanks of ConeXpress are identified as having a high failure risk from hypervelocity impacts, mainly caused by micro-meteoroids. Options are studied to enhance the impact protection. It is demonstrated that even a thin additional protective layer spaced several cm from the tank would act as part of a double wall (Whipple) shield and greatly reduce the impact risk. In case of ConeXpress with 12 years mission duration the risk of impact related failure of a tank can be reduced from almost 39% for an unprotected tank facing in flight direction to below 0.1% for a tank protected by a properly designed Whipple shield.
Keywords:Hypervelocity impacts  Space debris  Meteoroids  Impact risk assessment  ESABASE2/Debris
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号