首页 | 本学科首页   官方微博 | 高级检索  
     检索      

等离子体激励控制激波与边界层干扰流动分离数值研究
引用本文:王宇天,张百灵,李益文,肖良华.等离子体激励控制激波与边界层干扰流动分离数值研究[J].航空动力学报,2018,33(2):364-371.
作者姓名:王宇天  张百灵  李益文  肖良华
作者单位:1.空军工程大学 航空工程学院 等离子体动力学重点实验室,西安 710038
基金项目:国家自然科学基金(11372352,51306207)
摘    要:针对高超声速进气道激波与边界层干扰流动分离控制问题,提出了一种低功率重频非定常激励方式,并基于雷诺平均Navier-Stokes(N-S)方程,从唯象学的角度出发,将等离子激励简化为功率密度源项,对比研究了定常与低功率重频非定常等离子体气动激励的作用机理与控制效果。结果表明:定常激励的能量沉积作用对于激波控制非常有效,并可诱导出斜激波,但是对于流动分离控制而言,其能量沉积显然过于强大,反而会使流动分离更加严重,无法满足控制要求;当采用低功率重频非定常激励方式时,对于不同功率密度的情况均存在最佳激励时长与频率,当功率密度为5.0×109W/m3时,最大射流速度可以达到895m/s,并且可以在一定程度上减弱激波与边界层干扰流动分离。 

关 键 词:激波与边界层干扰    流动分离    等离子体    射流    流动控制
收稿时间:2016/7/5 0:00:00

Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation
Abstract:A method of low-power and multi-pulse jet actuation was proposed to solve the problem of control of shock wave and boundary layer interactions flow separation in hypersonic inlet, and based on the Reynolds averaging Navier-Stokes(N-S) equations, the plasma actuation was simplified to power density source term in terms of phenomenology. A comparative study for control effect and mechanism of actuation of steady and unsteady low-power and multi-pulse plasma actuation was carried out. Results showed that, the energy deposition of steady actuation was effective for control of shock wave, and could induce an oblique shock wave, however, the energy deposition was strong to worsen the flow separation, and could not satisfy the need for control; for the unsteady low-power and multi-pulse actuation, there were optimum actuation duration and frequency at different power densities; when the power density was 5.0×109(W/m3), the maximum of jet velocity could reach 895m/s, which could alleviate the shock wave and boundary layer interactions flow separation to some extent.
Keywords:shock wave and boundary layer interactions(SWBLI)  flow separation  plasma  jet  flow control
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号